Superfast Line Spectral Estimation

A number of recent works have proposed to solve the line spectral estimation problem by applying off-the-grid extensions of sparse estimation techniques. These methods are preferable over classical line spectral estimation algorithms because they inherently estimate the model order. However, they all have computation times that grow at least cubically in the problem size, thus limiting their practical applicability in cases with large dimensions. To alleviate this issue, we propose a low-complexity method for line spectral estimation, which also draws on ideas from sparse estimation. Our method is based on a Bayesian view of the problem. The signal covariance matrix is shown to have Toeplitz structure, allowing superfast Toeplitz inversion to be used. We demonstrate that our method achieves estimation accuracy at least as good as current methods and that it does so while being orders of magnitudes faster.

[1]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[2]  Michael E. Tipping,et al.  Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .

[3]  Bhaskar D. Rao,et al.  A sparse Bayesian learning algorithm with dictionary parameter estimation , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[4]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[5]  Yves Goussard,et al.  Unsupervised deconvolution of sparse spike trains using stochastic approximation , 1996, IEEE Trans. Signal Process..

[6]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[7]  H. Vincent Poor,et al.  Fast Variational Sparse Bayesian Learning With Automatic Relevance Determination for Superimposed Signals , 2011, IEEE Transactions on Signal Processing.

[8]  X. Andrade,et al.  Application of compressed sensing to the simulation of atomic systems , 2012, Proceedings of the National Academy of Sciences.

[9]  Björn E. Ottersten,et al.  Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data , 1992, IEEE Trans. Signal Process..

[10]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[11]  W. Gragg,et al.  Numerical experience with a superfast real Toeplitz solver , 1989 .

[12]  Walter F. Mascarenhas,et al.  The BFGS method with exact line searches fails for non-convex objective functions , 2004, Math. Program..

[13]  Kyuwan Choi,et al.  Detecting the Number of Clusters in n-Way Probabilistic Clustering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Bernard H. Fleury,et al.  Bayesian compressed sensing with unknown measurement noise level , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[15]  Charles Elkan,et al.  Expectation Maximization Algorithm , 2010, Encyclopedia of Machine Learning.

[16]  David B. Dunson,et al.  Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[17]  Jerry M. Mendel,et al.  Maximum likelihood detection and estimation of Bernoulli - Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[18]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[19]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[20]  Robert D. Nowak,et al.  Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels , 2010, Proceedings of the IEEE.

[21]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[22]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[23]  Bernard H. Fleury,et al.  Variational Bayesian Inference of Line Spectra , 2016, IEEE Transactions on Signal Processing.

[24]  D. Luenberger,et al.  Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.

[25]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[26]  Jérôme Idier,et al.  Direction-of-arrival and frequency estimation using Poisson-Gaussian modeling , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[28]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[29]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[30]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[31]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[32]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[33]  K. Arun,et al.  State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .

[34]  Randolph L. Moses,et al.  High resolution radar target modeling using a modified Prony estimator , 1992 .

[35]  W. Gragg,et al.  The generalized Schur algorithm for the superfast solution of Toeplitz systems , 1987 .

[36]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[37]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[38]  Qiang Fu,et al.  Compressed Sensing of Complex Sinusoids: An Approach Based on Dictionary Refinement , 2012, IEEE Transactions on Signal Processing.

[39]  Bruce R. Musicus Fast MLM power spectrum estimation from uniformly spaced correlations , 1985, IEEE Trans. Acoust. Speech Signal Process..

[40]  Jian Li,et al.  Computationally efficient maximum-likelihood estimation of structured covariance matrices , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).