A Review of Strategies for Developing Promising Thermoelectric Materials by Controlling Thermal Conduction

[1]  Xiaofang Li,et al.  Recent progress towards high performance of tin chalcogenide thermoelectric materials , 2018 .

[2]  M. Shikano,et al.  Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure , 2003 .

[3]  D. Emin Thermoelectric power due to electronic hopping motion , 1975 .

[4]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[5]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[6]  J. David Zook,et al.  Electrical Properties of Heavily Doped Silicon , 1963 .

[7]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[8]  M. Cardona,et al.  THERMAL-CONDUCTIVITY MEASUREMENTS OF GAAS/ALAS SUPERLATTICES USING A PICOSECOND OPTICAL PUMP-AND-PROBE TECHNIQUE , 1999 .

[9]  Zhong-Zhen Yu,et al.  The effect of graphite oxide on the thermoelectric properties of polyaniline , 2012 .

[10]  T. Takabatake,et al.  Effects of valence fluctuation and pseudogap formation on phonon thermal conductivity of Ce-based compounds with ε-TiNiSi-type structure , 2002 .

[11]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[12]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[13]  T. Takabatake,et al.  Neutron scattering study of phonon dynamics on type-I Clathrate Ba8Ga16Ge30 , 2007 .

[14]  H. Sato,et al.  Phonon dispersion curves in CeOs4Sb12 , 2007 .

[15]  G. J. Snyder,et al.  Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery , 2011 .

[16]  Limin Wang,et al.  Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering , 2014 .

[17]  B. C. Daly,et al.  Molecular dynamics calculation of the thermal conductivity of superlattices , 2002 .

[18]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[19]  Kim Lefmann,et al.  Avoided crossing of rattler modes in thermoelectric materials. , 2008, Nature materials.

[20]  M. Karppinen,et al.  ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition , 2014 .

[21]  N. P. Ong,et al.  Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 , 2003, Nature.

[22]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[23]  John D. Dow,et al.  Thermal conductivity of superlattices , 1982 .

[24]  Y. Chalopin,et al.  Atomic-Scale Three-Dimensional Phononic Crystals With a Very Low Thermal Conductivity to Design Crystalline Thermoelectric Devices , 2009 .

[25]  M. Kovalenko,et al.  Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. , 2017, Chemical Society reviews.

[26]  O. Paul,et al.  Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications , 2015 .

[27]  Roy H. Olsson,et al.  Microfabricated phononic crystal devices and applications , 2008 .

[28]  Jorge O. Sofo,et al.  Thermoelectric figure of merit of superlattices , 1994 .

[29]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[30]  Martin Maldovan,et al.  Narrow low-frequency spectrum and heat management by thermocrystals. , 2013, Physical review letters.

[31]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[32]  O. Paul,et al.  Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures , 2015 .

[33]  Y. Tokura,et al.  Enhanced thermopower in ZnO two-dimensional electron gas , 2016, Proceedings of the National Academy of Sciences.

[34]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[35]  Sossina M. Haile,et al.  Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1–xZn2Sb2 , 2005 .

[36]  R. Pohl Thermal Conductivity and Phonon Resonance Scattering , 1962 .

[37]  A. Mills Chains, planes, and antimonides , 2002 .

[38]  Shiren Wang,et al.  Enhancing thermoelectric properties of organic composites through hierarchical nanostructures , 2013, Scientific Reports.

[39]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[40]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[41]  A. Majumdar,et al.  Quantifying surface roughness effects on phonon transport in silicon nanowires. , 2012, Nano letters.

[42]  Shawna R. Brown,et al.  Lattice dynamics in the thermoelectric Zintl compound Yb14MnSb11 , 2011 .

[43]  G. J. Snyder,et al.  Phonon engineering through crystal chemistry , 2011 .

[44]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[45]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[46]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[47]  Qing Wang,et al.  Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films , 2010 .

[48]  R. Venkatasubramanian Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures , 2000 .

[49]  G. Papoian,et al.  Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl-Klemm Concept to Nonclassical Electron-Rich Networks. , 2000, Angewandte Chemie.

[50]  Takafumi Yao,et al.  Thermal properties of AlAs/GaAs superlattices , 1987 .

[51]  Gang Chen,et al.  Partially coherent phonon heat conduction in superlattices , 2003 .

[52]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[53]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[54]  Nuo Yang,et al.  Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. , 2014, Nano letters.

[55]  Mehmet F. Su,et al.  Realization of a phononic crystal operating at gigahertz frequencies , 2010 .

[56]  C. Soukoulis,et al.  Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene , 2018 .

[57]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[58]  K. Koumoto,et al.  Low-Thermal-Conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) Misfit Layer Compounds for Bulk Thermoelectric Materials , 2010, Materials.

[59]  C. Reinke,et al.  Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature , 2015, Nature Communications.

[60]  G. J. Snyder,et al.  The Zintl Compound Ca5Al2Sb6 for Low‐Cost Thermoelectric Power Generation , 2010 .

[61]  Choongho Yu,et al.  Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. , 2011, ACS nano.

[62]  G. J. Snyder,et al.  Improved Thermoelectric Performance in Yb14Mn1−xZnxSb11 by the Reduction of Spin-Disorder Scattering , 2008 .

[63]  Y. Gohda,et al.  Impact of rattlers on thermal conductivity of a thermoelectric clathrate: a first-principles study. , 2014, Physical review letters.

[64]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[65]  T. Isotalo,et al.  Engineering thermal conductance using a two-dimensional phononic crystal , 2014, Nature Communications.

[66]  W. L. Liu,et al.  Anisotropic thermal conductivity of Ge quantum-dot and symmetrically strained Si/Ge superlattices. , 2001, Journal of nanoscience and nanotechnology.

[67]  G. J. Snyder,et al.  Thermoelectric properties of Sr3GaSb3 – a chain-forming Zintl compound , 2012 .

[68]  Lawrence T. Drzal,et al.  Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties , 2012 .

[69]  T. Takabatake,et al.  Phonon Dynamics of Type-I Clathrate Sr8Ga16Ge30Studied by Inelastic Neutron Scattering , 2008 .

[70]  J. Bahk,et al.  Structure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires. , 2014, Nano letters.

[71]  M. Dresselhaus,et al.  Experimental proof-of-principle investigation of enhanced Z[sub 3D]T in (001) oriented Si/Ge superlattices , 2000 .

[72]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[73]  Brian M. Foley,et al.  Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity , 2015, Advanced materials.

[74]  S. Dou,et al.  Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. , 2011, Nano letters.

[75]  Yukihiro Tanaka,et al.  Phonon group velocity and thermal conduction in superlattices , 1999 .

[76]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[77]  Eric S. Toberer,et al.  Zintl Chemistry for Designing High Efficiency Thermoelectric Materials , 2010 .

[78]  Debdeep Jena,et al.  Heat‐Transport Mechanisms in Superlattices , 2009 .

[79]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[80]  Jingkun Xu,et al.  Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review , 2012 .

[81]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[82]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[83]  Ce-Wen Nan,et al.  BiCuSeO oxyselenides: new promising thermoelectric materials , 2014 .

[84]  Choongho Yu,et al.  Thermoelectric behavior of segregated-network polymer nanocomposites. , 2008, Nano letters.

[85]  A. K. Verma,et al.  Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure , 1995 .

[86]  Ling Chen,et al.  High Thermoelectric Performance of In4Se3-Based Materials and the Influencing Factors. , 2018, Accounts of chemical research.

[87]  K. Koumoto,et al.  Development of novel thermoelectric materials by reduction of lattice thermal conductivity , 2010, Science and technology of advanced materials.

[88]  Á. Rubio,et al.  Thermoelectric properties of atomic-thin silicene and germanene nano-structures , 2013, 1310.0971.

[89]  F. Trouw,et al.  Coupling of localized guest vibrations with the lattice modes in clathrate hydrates , 2001 .

[90]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[91]  Jian Wang,et al.  Yb14MgSb11 and Ca14MgSb11—New Mg-Containing Zintl Compounds and Their Structures, Bonding, and Thermoelectric Properties , 2015 .

[92]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[93]  Wolfgang Tremel,et al.  Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn(1-x)Fe(x)GeSe4. , 2013, Journal of the American Chemical Society.

[94]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[95]  J. Teubner,et al.  High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. , 2001, Physical review letters.

[96]  W. Jo,et al.  Simultaneous improvement in electrical and thermal properties of interface-engineered BiSbTe nanostructured thermoelectric materials , 2016 .

[97]  R. Olsson,et al.  Phonon manipulation with phononic crystals. , 2012 .

[98]  G. J. Snyder,et al.  Influence of the Triel Elements (M = Al, Ga, In) on the Transport Properties of Ca_5M_2Sb_6 Zintl Compounds , 2012 .

[99]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[100]  Changhong Liu,et al.  A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks , 2010, Advanced materials.

[101]  Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors , 1998, cond-mat/9812387.

[102]  S. Altın,et al.  High temperature spin state transitions in misfit-layered Ca3Co4O9 , 2014 .

[103]  Robert O. Pohl,et al.  Lattice Vibrations and Heat Transport in Crystals and Glasses , 1988 .

[104]  G. J. Snyder,et al.  Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb2 , 2011 .

[105]  R. J. Radtke,et al.  Thermoelectric properties of anisotropic semiconductors , 2002 .

[106]  T. Fujii,et al.  Control of thermoelectric properties of ZnO using electric double-layer transistor structure , 2014, 1406.5850.

[107]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[108]  Eric S. Toberer,et al.  Characterization and analysis of thermoelectric transport in n-type Ba_(8)Ga_(16−x)Ge_(30+x) , 2009 .

[109]  Rama Venkatasubramanian,et al.  Thermal conductivity of Si–Ge superlattices , 1997 .

[110]  Per Hyldgaard,et al.  Phonon superlattice transport , 1997 .

[111]  Kevin C. See,et al.  Effect of Interfacial Properties on Polymer–Nanocrystal Thermoelectric Transport , 2013, Advanced materials.

[112]  Ali Shakouri,et al.  Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices , 2002 .

[113]  Ryan Soklaski,et al.  Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. , 2014, Nano letters.

[114]  Xianli Su,et al.  Superparamagnetic enhancement of thermoelectric performance , 2017, Nature.

[115]  Yinglin Song,et al.  Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization , 2013 .

[116]  James R Heath,et al.  Superlattice nanowire pattern transfer (SNAP). , 2008, Accounts of chemical research.