Default Bayesian Estimation of the Fundamental Frequency

Joint fundamental frequency and model order estimation is an important problem in several applications. In this paper, a default estimation algorithm based on a minimum of prior information is presented. The algorithm is developed in a Bayesian framework, and it can be applied to both real- and complex-valued discrete-time signals which may have missing samples or may have been sampled at a non-uniform sampling frequency. The observation model and prior distributions corresponding to the prior information are derived in a consistent fashion using maximum entropy and invariance arguments. Moreover, several approximations of the posterior distributions on the fundamental frequency and the model order are derived, and one of the state-of-the-art joint fundamental frequency and model order estimators is demonstrated to be a special case of one of these approximations. The performance of the approximations are evaluated in a small-scale simulation study on both synthetic and real world signals. The simulations indicate that the proposed algorithm yields more accurate results than previous algorithms. The simulation code is available online.

[1]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[2]  Petar M. Djuric,et al.  A model selection rule for sinusoids in white Gaussian noise , 1996, IEEE Trans. Signal Process..

[3]  E. T. Jaynes,et al.  Bayesian Spectrum and Chirp Analysis , 1987 .

[4]  Wolfgang Hess,et al.  Pitch Determination of Speech Signals , 1983 .

[5]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[6]  Rodney W. Strachan,et al.  Improper priors with well defined Bayes Factors , 2004 .

[7]  Ronald J. Baken,et al.  Clinical measurement of speech and voice , 1987 .

[8]  Roland Badeau,et al.  A new perturbation analysis for signal enumeration in rotational invariance techniques , 2006, IEEE Transactions on Signal Processing.

[9]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[10]  L. Shields The logic of science. , 2007, Paediatric nursing.

[11]  Marvin H. J. Guber Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[12]  Jian Li,et al.  Multi-model approach to model selection , 2004, Digit. Signal Process..

[13]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[14]  V. K. Murthy,et al.  Analysis of power spectral densities of electrocardiograms , 1971 .

[15]  H. Dudley The carrier nature of speech , 1940 .

[16]  Hideki Kawahara,et al.  Nearly defect-free F0 trajectory extraction for expressive speech modifications based on STRAIGHT , 2005, INTERSPEECH.

[17]  B. G. Quinn,et al.  Estimating the frequency of a periodic function , 1991 .

[18]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[19]  E. Hannan,et al.  DETERMINING THE NUMBER OF TERMS IN A TRIGONOMETRIC REGRESSION , 1994 .

[20]  A. Noll Cepstrum pitch determination. , 1967, The Journal of the Acoustical Society of America.

[21]  M.G. Christensen,et al.  Multi-Pitch Estimation Using Harmonic Music , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[22]  B. G. Quinn,et al.  ESTIMATING THE NUMBER OF TERMS IN A SINUSOIDAL REGRESSION , 1989 .

[23]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[24]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[25]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[26]  Lawrence R. Rabiner,et al.  On the use of autocorrelation analysis for pitch detection , 1977 .

[27]  David Talkin,et al.  A Robust Algorithm for Pitch Tracking ( RAPT ) , 2005 .

[28]  Andreas Jakobsson,et al.  Multi-Pitch Estimation , 2009, Multi-Pitch Estimation.

[29]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[30]  David Barber,et al.  A generative model for music transcription , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[31]  Andreas Jakobsson,et al.  Joint High-Resolution Fundamental Frequency and Order Estimation , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[32]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[33]  Andreas Jakobsson,et al.  Sinusoidal Order Estimation Using Angles between Subspaces , 2009, EURASIP J. Adv. Signal Process..

[34]  G. L. Bretthorst The Near-Irrelevance of Sampling Frequency Distributions , 1999 .

[35]  Petar M. Djuric,et al.  Asymptotic MAP criteria for model selection , 1998, IEEE Trans. Signal Process..

[36]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[37]  Arye Nehorai,et al.  Adaptive comb filtering for harmonic signal enhancement , 1986, IEEE Trans. Acoust. Speech Signal Process..

[38]  M. Davy,et al.  Bayesian analysis of polyphonic western tonal music. , 2006, The Journal of the Acoustical Society of America.

[39]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[40]  J. Bernardo,et al.  THE FORMAL DEFINITION OF REFERENCE PRIORS , 2009, 0904.0156.

[41]  Mads Græsbøll Christensen,et al.  Accurate Estimation of Low Fundamental Frequencies From Real-Valued Measurements , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[42]  Sabine Van Huffel,et al.  A Shift Invariance-Based Order-Selection Technique for Exponential Data Modelling , 2007, IEEE Signal Processing Letters.

[43]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[44]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[45]  Simon J. Godsill,et al.  Bayesian harmonic models for musical pitch estimation and analysis , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[46]  M. Clyde,et al.  Mixtures of g Priors for Bayesian Variable Selection , 2008 .

[47]  B Gold,et al.  Parallel processing techniques for estimating pitch periods of speech in the time domain. , 1969, The Journal of the Acoustical Society of America.

[48]  James O. Berger,et al.  Objective Bayesian Methods for Model Selection: Introduction and Comparison , 2001 .

[49]  Jr. S. Marple,et al.  Computing the discrete-time 'analytic' signal via FFT , 1999, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[50]  Hideki Kawahara,et al.  YIN, a fundamental frequency estimator for speech and music. , 2002, The Journal of the Acoustical Society of America.

[51]  H. Jeffreys,et al.  Theory of probability , 1896 .

[52]  L. M. Berliner,et al.  Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems , 1989 .

[53]  Lisa M Zurk,et al.  Extraction of small boat harmonic signatures from passive sonar. , 2011, The Journal of the Acoustical Society of America.

[54]  Malcolm D. Macleod,et al.  Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones , 1998, IEEE Trans. Signal Process..

[55]  Wolfgang Hess,et al.  Pitch Determination of Speech Signals: Algorithms and Devices , 1983 .

[56]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[57]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[58]  Andreas Jakobsson,et al.  Joint fundamental frequency and order estimation using optimal filtering , 2009, 2009 17th European Signal Processing Conference.