Microstructure and strengthening mechanisms in Cu/Fe multilayers

Abstract Nanostructured Cu/Fe multilayers on Si (1 1 0) and Si (1 0 0) substrates were prepared by magnetron sputtering, with individual layer thicknesses h varying from 0.75 to 200 nm. The growth orientation relationships between Cu and Fe at the interfaces were determined to be of the Kurdjumov–Sachs and Nishiyama–Wasserman type. Nanoscale columnar grains in Fe, with an average grain size of 11–23 nm, played a dominant role in the strengthening mechanism when h ⩾ 50 nm. At smaller h the hardness of Cu/Fe multilayers with (1 0 0) texture approached a peak value, followed by softening due to the formation of fully coherent interfaces. However, abundant twins were observed in Cu/Fe films with (1 1 1) texture when h = 0.75 nm, which led to the retention of high hardness in the multilayers.

[1]  R. Dunin‐Borkowski,et al.  Electronic structure of face-centered-tetragonal iron in ferromagnetic iron-copper multilayers , 1999 .

[2]  J. Hirth,et al.  On the role of weak interfaces in blocking slip in nanoscale layered composites , 2006 .

[3]  A. Misra,et al.  Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers , 2010 .

[4]  Dok Won Lee,et al.  Structural and magnetic properties of Cu/Fe multilayers , 1999 .

[5]  Xiaolei Wu,et al.  Dislocation–twin interactions in nanocrystalline fcc metals , 2011 .

[6]  M. Lei,et al.  Evolution of Nanoindentation Hardness of Fe/Cu Nanometer-Scale Multilayers by Magnetron Sputtering , 2008 .

[7]  K. Ishihara,et al.  Preparation of high strength bulk nano-scale Fe/Cu multilayers by repeated pressing-rolling , 2001 .

[8]  J. Embury,et al.  On dislocation storage and the mechanical response of fine scale microstructures , 1994 .

[9]  Gang Liu,et al.  Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus , 2012 .

[10]  A. Misra,et al.  Deformation Behavior of Nanostructured Metallic Multilayers , 2001 .

[11]  F. Tichelaar,et al.  The effect of Cu interlayers on grain size and stress in sputtered Fe–Cu multilayered thin films , 2006 .

[12]  Amit Misra,et al.  Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites , 1998 .

[13]  M. Imam,et al.  Effect of annealing twins on Hall–Petch relation in polycrystalline materials , 2004 .

[14]  J. Hirth,et al.  Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals , 2009 .

[15]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[16]  J. Hirth,et al.  Atomistic modeling of the interaction of glide dislocations with “weak” interfaces , 2008 .

[17]  Huajian Gao,et al.  Dislocation nucleation governed softening and maximum strength in nano-twinned metals , 2010, Nature.

[18]  Haiyan Wang,et al.  A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers , 2012 .

[19]  M. Nastasi,et al.  Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers , 2003 .

[20]  Leonard C. Feldman,et al.  Electronic thin film science : for electrical engineers and materials scientists , 1996 .

[21]  Amit Misra,et al.  Work hardening in rolled nanolayered metallic composites , 2005 .

[22]  S. I. Rao,et al.  Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system , 2000 .

[23]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[24]  F. Jona,et al.  Structural properties of epitaxial films of Fe on Cu and Cu-based surface and bulk alloys , 1989 .

[25]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[26]  Nan Li,et al.  Mechanical properties of sputtered Cu/V and Al/Nb multilayer films , 2008 .

[27]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[28]  Haiyan Wang,et al.  Mechanical properties of highly textured Cu/Ni multilayers , 2011 .

[29]  Haiyan Wang,et al.  High strength, epitaxial nanotwinned Ag films , 2011 .

[30]  P. Anderson,et al.  Dislocation-Based Deformation Mechanisms in Metallic Nanolaminates , 1999 .

[31]  W. Nix Elastic and plastic properties of thin films on substrates : nanoindentation techniques , 1997 .

[32]  Jingzhou Zhang,et al.  Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films , 2012 .

[33]  A. Misra,et al.  An overview of interface-dominated deformation mechanisms in metallic multilayers , 2011 .

[34]  Manling Sui,et al.  Twinnability Predication for fcc Metals , 2011 .

[35]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[36]  Ernst,et al.  Theoretical prediction and direct observation of the 9R structure in Ag. , 1992, Physical review letters.

[37]  Yong Li,et al.  Understanding nanoscale damage at a crack tip of multilayered metallic composites , 2008 .

[38]  M. Nastasi,et al.  Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning , 2004 .

[39]  Amit Misra,et al.  Deformation mechanism maps for polycrystalline metallic multiplayers , 1999 .