Linear quadratic regulation of systems with stochastic parameter uncertainties

In this paper, we develop a theoretical framework for linear quadratic regulator design for linear systems with probabilistic uncertainty in the parameters. The framework is built on the generalized polynomial chaos theory. In this framework, the stochastic dynamics is transformed into deterministic dynamics in higher dimensional state space, and the controller is designed in the expanded state space. The proposed design framework results in a family of controllers, parameterized by the associated random variables. The theoretical results are applied to a controller design problem based on stochastic linear, longitudinal F16 model. The performance of the stochastic design shows excellent consistency, in a statistical sense, with the results obtained from Monte-Carlo based designs.

[1]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[2]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[3]  Robert F. Stengel,et al.  Robust nonlinear flight control of a high-performance aircraft , 2005, IEEE Transactions on Control Systems Technology.

[4]  A. Schaft G.E. Dullerud and F. Paganini - A course in robust control theory: a convex approach. Berlin: Springer-Verlag, 2000 (Text in Applied Mathematics ; 36) , 2001 .

[5]  R. Stengel,et al.  Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems , 1991 .

[6]  J. Doob Stochastic processes , 1953 .

[7]  K. Goh,et al.  Control system synthesis via bilinear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[8]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[9]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[10]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[11]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[12]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[13]  Bei Lu,et al.  Probabilistic Robust Control Design for An F-16 Aircraft , 2005 .

[14]  Guanrong Chen,et al.  Linear Stochastic Control Systems , 1995 .

[15]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[16]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[17]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[18]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[19]  Z. Nagy,et al.  Distributional uncertainty analysis using power series and polynomial chaos expansions , 2007 .

[20]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[22]  B. Ross Barmish,et al.  The uniform distribution: A rigorous justification for its use in robustness analysis , 1996, Math. Control. Signals Syst..

[23]  B. Øksendal Stochastic Differential Equations , 1985 .

[24]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[25]  R. Bucy,et al.  Filtering for stochastic processes with applications to guidance , 1968 .

[26]  Roberto Tempo,et al.  Probabilistic design of LPV control systems , 2003, Autom..

[27]  N. Wiener The Homogeneous Chaos , 1938 .

[28]  I. Horowitz Invited paper Survey of quantitative feedback theory (QFT) , 1991 .

[29]  Robert F. Stengel,et al.  Some Effects of Parameter Variations on the Lateral-Directional Stability of Aircraft , 1980 .

[30]  David L. Ma,et al.  Worst‐case performance analysis of optimal batch control trajectories , 1999 .

[31]  Roberto Tempo,et al.  Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..

[32]  I. Horowitz Survey of quantitative feedback theory (QFT) , 2001 .

[33]  D. Siljak Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.

[34]  I. Horowitz Quantitative feedback theory , 1982 .

[35]  Raktim Bhattacharya,et al.  Polynomial Chaos-Based Analysis of Probabilistic Uncertainty in Hypersonic Flight Dynamics , 2010 .

[36]  Franz S. Hover,et al.  Application of polynomial chaos in stability and control , 2006, Autom..

[37]  G. Calafiore,et al.  Probabilistic and Randomized Methods for Design under Uncertainty , 2006 .

[38]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[39]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[40]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[41]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[42]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[43]  S. Balemi,et al.  Robustness of Dynamic Systems With Parameter Uncertainties , 1992 .

[44]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Fourier spectral methods , 2007 .

[45]  Dongbin Xiu,et al.  Stochastic Solutions for the Two-Dimensional Advection-Diffusion Equation , 2005, SIAM J. Sci. Comput..

[46]  Marc Gerritsma,et al.  Time‐Dependent Polynomial Chaos , 2008 .

[47]  P. L. Deal,et al.  Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability. [F-16] , 1979 .

[48]  Jian-Qiao Sun,et al.  Stochastic dynamics and control , 2006 .

[49]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[50]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[51]  M. Safonov Stability margins of diagonally perturbed multivariable feedback systems , 1982 .

[52]  Roger Ghanem,et al.  Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration , 1998 .

[53]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[54]  B. R. Barmish,et al.  A probabilistic robustness result for a multilinearly parameterized H/sub /spl infin// norm , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[55]  Adrian Sandu,et al.  A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part I: Theoretical Approach , 2007 .

[56]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .