Limit theorems for eigenvectors of the normalized Laplacian for random graphs

We prove a central limit theorem for the components of the eigenvectors corresponding to the $d$ largest eigenvalues of the normalized Laplacian matrix of a finite dimensional random dot product graph. As a corollary, we show that for stochastic blockmodel graphs, the rows of the spectral embedding of the normalized Laplacian converge to multivariate normals and furthermore the mean and the covariance matrix of each row are functions of the associated vertex's block membership. Together with prior results for the eigenvectors of the adjacency matrix, we then compare, via the Chernoff information between multivariate normal distributions, how the choice of embedding method impacts subsequent inference. We demonstrate that neither embedding method dominates with respect to the inference task of recovering the latent block assignments.

[1]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[2]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[3]  Don H. Johnson,et al.  On the asymptotics of M-hypothesis Bayesian detection , 1997, IEEE Trans. Inf. Theory.

[4]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[5]  A. Rinaldo,et al.  Consistency of spectral clustering in stochastic block models , 2013, 1312.2050.

[6]  P. MassartLedoux,et al.  Concentration Inequalities Using the Entropy Method , 2002 .

[7]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  YU BIN,et al.  IMPACT OF REGULARIZATION ON SPECTRAL CLUSTERING , 2016 .

[9]  Peter J. Bickel,et al.  Pseudo-likelihood methods for community detection in large sparse networks , 2012, 1207.2340.

[10]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[11]  P. Wolfe,et al.  Nonparametric graphon estimation , 2013, 1309.5936.

[12]  H. Chernoff LARGE-SAMPLE THEORY: PARAMETRIC CASE' , 1956 .

[13]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[14]  Cosma Rohilla Shalizi,et al.  Geometric Network Comparisons , 2014, UAI.

[15]  Adrian E. Raftery,et al.  MCLUST: Software for Model-Based Cluster Analysis , 1999 .

[16]  C. Nickel RANDOM DOT PRODUCT GRAPHS A MODEL FOR SOCIAL NETWORKS , 2008 .

[17]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[18]  P. Diaconis,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[19]  C. Priebe,et al.  Perfect Clustering for Stochastic Blockmodel Graphs via Adjacency Spectral Embedding , 2013, 1310.0532.

[20]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[21]  Carey E. Priebe,et al.  A Consistent Adjacency Spectral Embedding for Stochastic Blockmodel Graphs , 2011, 1108.2228.

[22]  Cosma Rohilla Shalizi,et al.  Geometric Network Comparisons , 2015, UAI.

[23]  Tai Qin,et al.  Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel , 2013, NIPS.

[24]  C. Priebe,et al.  A Semiparametric Two-Sample Hypothesis Testing Problem for Random Graphs , 2017 .

[25]  R. Oliveira Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges , 2009, 0911.0600.

[26]  Fan Chung Graham,et al.  Spectral Clustering of Graphs with General Degrees in the Extended Planted Partition Model , 2012, COLT.

[27]  D. Sussman Foundations of Adjacency Spectral Embedding , 2014 .

[28]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[29]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Bin Yu,et al.  Spectral clustering and the high-dimensional stochastic blockmodel , 2010, 1007.1684.

[31]  Igor Vajda,et al.  On Divergences and Informations in Statistics and Information Theory , 2006, IEEE Transactions on Information Theory.

[32]  C. Priebe,et al.  A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs , 2013, Sankhya A.

[33]  Edoardo M. Airoldi,et al.  Stochastic blockmodels with growing number of classes , 2010, Biometrika.

[34]  P. Bickel,et al.  Role of normalization in spectral clustering for stochastic blockmodels , 2013, 1310.1495.

[35]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[36]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[37]  Edoardo M. Airoldi,et al.  Nonparametric estimation and testing of exchangeable graph models , 2014, AISTATS.

[38]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[39]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[40]  Linyuan Lu,et al.  Spectra of Edge-Independent Random Graphs , 2012, Electron. J. Comb..

[41]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[42]  Frank McSherry,et al.  Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[43]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .