A resolution of non-uniqueness puzzle of periodic orbits in the 2-dim anisotropic Kepler problem: bifurcation U → S + U′
暂无分享,去创建一个
[1] T. Shimada,et al. Periodic orbit theory revisited in the anisotropic Kepler problem , 2013, 1311.1727.
[2] G. Contopoulos,et al. Stability and instability in the anisotropic Kepler problem , 2005 .
[3] Jj Org Main. Use of Harmonic Inversion Techniques in Semiclassical Quantization and Analysis of Quantum Spectra , 1999 .
[4] F. Haake,et al. Semiclassical Spectra from Periodic-Orbit Clusters in a Mixed Phase Space , 1997, chao-dyn/9703016.
[5] Jorge V. José,et al. Chaos in classical and quantum mechanics , 1990 .
[6] M. Gutzwiller. From classical to quantum mechanics with hard chaos , 1988 .
[7] J. Hannay,et al. Resonant periodic orbits and the semiclassical energy spectrum , 1987 .
[8] Robert L. Devaney,et al. Collision orbits in the anisotropic Kepler problem , 1978 .
[9] M. Gutzwiller. Bernoulli sequences and trajectories in the anisotropic Kepler problem , 1977 .
[10] Richard McGehee,et al. Triple collision in the collinear three-body problem , 1974 .
[11] M. Gutzwiller,et al. Periodic Orbits and Classical Quantization Conditions , 1971 .