Comparison of clustering algorithms for analog modulation classification

This study introduces a comparative study of implementation of clustering algorithms on classification of the analog modulated communication signals. A number of key features are used for characterizing the analog modulation types. Four different clustering algorithms are used for classifying the analog signals. These most representative clustering techniques are K-means clustering, fuzzy C-means clustering, mountain clustering and subtractive clustering. Performance comparison of these clustering algorithms and the advantages and disadvantages of the methods are examined. The validity analysis is performed. The study is supported with computer simulations.

[1]  Ravi Kothari,et al.  On finding the number of clusters , 1999, Pattern Recognit. Lett..

[2]  Asoke K. Nandi,et al.  Automatic Modulation Recognition of Communication Signals , 1996 .

[3]  Abdulkadir Sengür,et al.  An Educational Interface for Automatic Recognition of Analog Modulated Signals , 2005 .

[4]  Samir S. Soliman,et al.  Signal classification using statistical moments , 1992, IEEE Trans. Commun..

[5]  David Gerhard,et al.  Audio Signal Classification: An Overview , 2002 .

[6]  Dimitar Filev,et al.  Generation of Fuzzy Rules by Mountain Clustering , 1994, J. Intell. Fuzzy Syst..

[7]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Janet Aisbett Automatic modulation recognition using time domain parameters , 1987 .

[10]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[11]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[12]  David G. Stork,et al.  Pattern Classification , 1973 .

[13]  R. Yager,et al.  Approximate Clustering Via the Mountain Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[14]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[15]  D. Boudreau,et al.  An automatic modulation recognition algorithm for spectrum monitoring applications , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[16]  Nasir Ghani,et al.  Neural networks applied to the classification of spectral features for automatic modulation recognition , 1993, Proceedings of MILCOM '93 - IEEE Military Communications Conference.

[17]  Friedrich K. Jondral,et al.  Automatic classification of high frequency signals , 1985 .

[18]  José Manuel Páez-Borrallo,et al.  A general approach to the automatic classification of radiocommunication signals , 1991, Signal Process..

[19]  Sebastiano B. Serpico,et al.  Intelligent control of signal processing algorithms in communications , 1994, IEEE J. Sel. Areas Commun..

[20]  Kiseon Kim,et al.  On the detection and classification of quadrature digital modulations in broad-band noise , 1990, IEEE Trans. Commun..

[21]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[22]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[23]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .