Determination of point of maximum likelihood in failure domain using genetic algorithms

The point of maximum likelihood in a failure domain yields the highest value of the probability density function in the failure domain. The maximum-likelihood point thus represents the worst combination of random variables that contribute in the failure event. In this work Genetic Algorithms (GAs) with an adaptive penalty scheme have been proposed as a tool for the determination of the maximum likelihood point. The utilization of only numerical values in the GAs operation makes the algorithms applicable to cases of non-linear and implicit single and multiple limit state function(s). The algorithmic simplicity readily extends its application to higher dimensional problems. When combined with Monte Carlo Simulation, the proposed methodology will reduce the computational complexity and at the same time will enhance the possibility in rare-event analysis under limited computational resources. Since, there is no approximation done in the procedure, the solution obtained is considered accurate. Consequently, GAs can be used as a tool for increasing the computational efficiency in the element and system reliability analyses.