Cerebrovascular MRI in the mouse without an exogenous contrast agent

To assess the effect of a variety of anesthetic regimes on T2∗ ‐weighted MRI of the mouse brain and to determine the optimal regimes to perform T2∗ ‐weighted MRI of the mouse cerebrovasculature without a contrast agent.

[1]  Karin Shmueli,et al.  Noninvasive quantification of oxygen saturation in the portal and hepatic veins in healthy mice and those with colorectal liver metastases using QSM MRI , 2018, Magnetic resonance in medicine.

[2]  M. Rudin,et al.  Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions , 2017, Front. Neural Circuits.

[3]  A. Bruns,et al.  A novel anesthesia regime enables neurofunctional studies and imaging genetics across mouse strains , 2016, Scientific Reports.

[4]  Anna Devor,et al.  Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe , 2015, The Journal of Neuroscience.

[5]  Nicolas Pannetier,et al.  Imaging the microvessel caliber and density: Principles and applications of microvascular MRI , 2015, Magnetic resonance in medicine.

[6]  Aileen Schroeter,et al.  Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns , 2014, NeuroImage.

[7]  Lynn Uhrig,et al.  Sedation Agents Differentially Modulate Cortical and Subcortical Blood Oxygenation: Evidence from Ultra-High Field MRI at 17.2 T , 2014, PloS one.

[8]  Maxime Descoteaux,et al.  Regional variations in vascular density correlate with resting‐state and task‐evoked blood oxygen level‐dependent signal amplitude , 2014, Human brain mapping.

[9]  Chiao-Chi V. Chen,et al.  Neurovascular abnormalities in humans and mice with Huntington's disease , 2013, Experimental Neurology.

[10]  Fu-Shan Jaw,et al.  High-Resolution Structural and Functional Assessments of Cerebral Microvasculature Using 3D Gas ΔR2*-mMRA , 2013, PloS one.

[11]  Philip Kollmannsberger,et al.  Architecture of the osteocyte network correlates with bone material quality , 2013, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  T. Jang,et al.  Visualization of rodent brain tumor angiogenesis and effects of antiangiogenic treatment using 3D ΔR2-μMRA , 2013, Angiogenesis.

[13]  B. Tomanek,et al.  A pixel is an artifact: On the necessity of zero‐filling in fourier imaging , 2013 .

[14]  Seong-Gi Kim,et al.  Effects of the α2‐adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex , 2013, The European journal of neuroscience.

[15]  Willy Gsell,et al.  Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare , 2012, EJNMMI Research.

[16]  Lynn Uhrig,et al.  Effects of Anesthetic Agents on Brain Blood Oxygenation Level Revealed with Ultra-High Field MRI , 2012, PloS one.

[17]  S. Ogawa,et al.  Biophysical and Physiological Origins of Blood Oxygenation Level-Dependent fMRI Signals , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  A. Brunetti,et al.  Mice anesthesia, analgesia, and care, Part I: anesthetic considerations in preclinical research. , 2012, ILAR journal.

[19]  Markus Rudin,et al.  Contrast-Enhanced Magnetic Resonance Microangiography Reveals Remodeling of the Cerebral Microvasculature in Transgenic ArcAβ Mice , 2012, The Journal of Neuroscience.

[20]  E. Mark Haacke,et al.  Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications , 2011 .

[21]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[22]  E. Haacke,et al.  Susceptibility Weighted Imaging in Rodents , 2011 .

[23]  Stefan A. Carp,et al.  The effect of different anesthetics on neurovascular coupling , 2010, NeuroImage.

[24]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[25]  Peter Redgrave,et al.  Vascular Origins of BOLD and CBV fMRI Signals: Statistical Mapping and Histological Sections Compared , 2010, The open neuroimaging journal.

[26]  Kazuto Masamoto,et al.  Imaging brain vasculature with BOLD microscopy: MR detection limits determined by in vivo two‐photon microscopy , 2008, Magnetic resonance in medicine.

[27]  Robert P. Dougherty,et al.  Computing Local Thickness of 3D Structures with ImageJ , 2007, Microscopy and Microanalysis.

[28]  Essa Yacoub,et al.  In vivo micro-MRI of intracortical neurovasculature , 2006, NeuroImage.

[29]  Thomas L. Smith,et al.  Effects of anesthetics on systemic hemodynamics in mice. , 2004, American journal of physiology. Heart and circulatory physiology.

[30]  M. Sinclair A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. , 2003, The Canadian veterinary journal = La revue veterinaire canadienne.

[31]  S. Dohi,et al.  Effects of Ketamine on Isoflurane- and Sevoflurane-Induced Cerebral Vasodilation in Rabbits , 2003, Journal of neurosurgical anesthesiology.

[32]  E. Haacke,et al.  High‐resolution BOLD venographic imaging: a window into brain function , 2001, NMR in biomedicine.

[33]  H. M. Swartz,et al.  The effects of ketamine–xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry , 2001, Brain Research.

[34]  M. Bernstein,et al.  Effect of windowing and zero‐filled reconstruction of MRI data on spatial resolution and acquisition strategy , 2001, Journal of magnetic resonance imaging : JMRI.

[35]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[36]  A. Hudetz,et al.  In Vivo Effects of Dexmedetomidine on Laser‐Doppler Flow and Pial Arteriolar Diameter , 1998, Anesthesiology.

[37]  P. Rüegsegger,et al.  A new method for the model‐independent assessment of thickness in three‐dimensional images , 1997 .

[38]  Harold M. Swartz,et al.  Assessment of cerebral pO2 by EPR oximetry in rodents: effects of anesthesia, ischemia, and breathing gas , 1995, Brain Research.

[39]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[40]  Yiping P. Du,et al.  Reduction of partial‐volume artifacts with zero‐filled interpolation in three‐dimensional MR angiography , 1994, Journal of magnetic resonance imaging : JMRI.

[41]  M. Zornow,et al.  Dexmedetomidine, an α2‐Adrenergic Agonist, Decreases Cerebral Blood Flow in the Isoflurane‐Anesthetized Dog , 1990, Anesthesia and analgesia.

[42]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[43]  C. Tommasino,et al.  Local Cerebral Blood Flow and Glucose Utilization during Isoflurane Anesthesia in the Rat , 1986, Anesthesiology.

[44]  Christakis Constantinides,et al.  Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse. , 2011, ILAR journal.

[45]  A. Heerschap,et al.  Contrast enhanced susceptibility weighted imaging (CE-SWI) of the mouse brain using ultrasmall superparamagnetic ironoxide particles (USPIO). , 2006, Zeitschrift fur medizinische Physik.

[46]  P J Hoopes,et al.  Effect of anesthesia on cerebral tissue oxygen and cardiopulmonary parameters in rats. , 1997, Advances in experimental medicine and biology.