Seismic Wave Propagation And Imaging Using Time-space Wavelets

Using a tensor product of a local exponential frame vector as the time-frequency atom (a drumbeat) and a local cosine basis function as the space-wavenumber atom (a beamlet), we construct a localized ( t ω − , x ξ − ) atom (a drumbeatbeamlet). The imaging condition in the local t ω − domain is introduced and the propagator matrix in the local ( t ω − , x ξ − ) domain is derived. The compression of seismic data using the new decomposition is tested and simple numerical tests on the propagator matrix are performed. The sparseness in both data and propagator decompositions is demonstrated through these examples. The method has potential application in efficient representation of seismic data and wave-theory based seismic imaging using compressed data.

[1]  Ru-Shan Wu,et al.  Illumination Analysis Using Local Exponential Beamlets , 2007 .

[2]  Ru-Shan Wu,et al.  Target-Oriented Prestack Beamlet Migration Using Gabor-Daubechies Frames , 2002 .

[3]  S. Mallat A wavelet tour of signal processing , 1998 .

[4]  Hervé Chauris,et al.  Seismic demigration/migration in the curvelet domain , 2008 .

[5]  Jinghuai Gao,et al.  Beamlet migration based on local perturbation theory , 2000 .

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  Huub Douma,et al.  Leading-order seismic imaging using curvelets , 2007 .

[8]  Ru-Shan Wu,et al.  Directional illumination analysis using beamlet decomposition and propagation , 2006 .

[9]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[10]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[11]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[12]  Ru-Shan Wu,et al.  Wave Propagation and Imaging Using Gabor-Daubechies Beamlets , 2002 .

[13]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[14]  Charles C. Mosher,et al.  Phase-shift migration with wave-packet algorithms , 1996, Optics & Photonics.

[15]  R. Wu,et al.  Adapted Local Cosine Transform Application to Seismic Data , 2007 .

[16]  Ben Z. Steinberg Evolution of local spectra in smoothly varying nonhomogeneous environments−Local canonization and marching algorithms , 1992 .

[17]  Ru-Shan Wu,et al.  Beamlet Migration Using Local Harmonic Bases , 2007 .

[18]  Felix J. Herrmann,et al.  Curvelet-based seismic data processing : A multiscale and nonlinear approach , 2008 .

[19]  J. F. Clearbout Imaging the Earth's interior. , 1985 .

[20]  Ru-Shan Wu,et al.  Target-oriented beamlet migration based on Gabor-Daubechies frame decomposition , 2006 .