All-optical control of weak-light transport and Fano-like resonance using control-probe technique in a quantum-dot-pillar microcavity system

Control of light by light is a current research topic and is important for a variety of fundamental studies and practical applications. Here, we put forward a chip-scale scheme for all-optical control of small-signal photon transport and Fano-like lineshape in a coupled quantum-dot-pillar microcavity system based on a control-probe technique. Specifically, a bichromatic input light field, which consists of a weak probe field and a tunable control field, is applied to simultaneously drive the pillar cavity mode (called the control-probe technique) and both its reflectivity from and transmittivity through the pillar cavity constitute two output channels (i.e., a reflectivity signal channel and a transmittivity signal channel). We derive full analytical expressions for the reflectivity and transmittivity coefficients via a perturbation method. Using experimentally realistic parameters, theoretical analysis shows that the output probe light of the reflectivity and transmittivity channels can be switched on or...

[1]  P. Leung,et al.  Theory of microcavity-enhanced Raman gain. , 1999, Optics letters.

[2]  V. Ciornea,et al.  Cavity-output-field suppression due to interference effects , 2014, 1408.1622.

[3]  A. Badolato,et al.  The nonlinear Fano effect , 2008, Nature.

[4]  Evelyn L. Hu,et al.  Ultrafast all-optical switching by single photons , 2011, Nature Photonics.

[5]  A. Lemaître,et al.  Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device. , 2012, Physical review letters.

[6]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[7]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[8]  D. Englund,et al.  Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. , 2010, Physical review letters.

[9]  Linjie Zhou,et al.  Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback. , 2007, Optics express.

[10]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[11]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[12]  A. Rauschenbeutel,et al.  Fiber-optical switch controlled by a single atom. , 2013, Physical review letters.

[13]  Erik D. Kim,et al.  Probing of single quantum dot dressed states via an off-resonant cavity , 2011 .

[14]  Sylvain Combrié,et al.  Ultrafast all-optical modulation in GaAs photonic crystal cavities , 2009 .

[15]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[16]  A. Lemaître,et al.  Coherent manipulation of a solid-state artificial atom with few photons , 2016, Nature Communications.

[17]  J. Mørk,et al.  Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation. , 2014, Physical review letters.

[18]  M. Xiao,et al.  Realization of all-optical multistate switching in an atomic coherent medium. , 2012, Physical review letters.

[19]  Hua Long,et al.  Nonreciprocal Phase Shift and Mode Modulation in Dynamic Graphene Waveguides , 2016, Journal of Lightwave Technology.

[20]  Isabelle Sagnes,et al.  Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar , 2010, 1011.1155.

[21]  L. Coldren,et al.  Polarization degenerate solid-state cavity quantum electrodynamics , 2015 .

[22]  Jesper Mørk,et al.  Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches. , 2011, Optics express.

[23]  Andrei Faraon,et al.  Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. , 2011, Physical review letters.

[24]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[25]  Hua Long,et al.  Exceptional Points and Asymmetric Mode Switching in Plasmonic Waveguides , 2016, Journal of Lightwave Technology.

[26]  Erik D. Kim,et al.  Bichromatic driving of a solid-state cavity quantum electrodynamics system , 2011, 1104.0898.

[27]  Tobias J. Kippenberg,et al.  Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators , 2010, 1003.5922.

[28]  Lan Yang,et al.  Coupled optical microcavities: an enhanced refractometric sensing configuration. , 2008, Optics express.

[29]  E. Waks,et al.  Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. , 2012, Physical review letters.

[30]  D. Englund,et al.  All Optical Switching With a Single Quantum Dot Strongly Coupled to a Photonic Crystal Cavity , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  G. Cincotti,et al.  Ultrafast switching by controlling Rabi splitting , 2007 .

[32]  Ying Wu,et al.  Quantum theory for microcavity enhancement of second harmonic generation , 2001 .

[33]  Andrei Faraon,et al.  Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator. , 2009, Optics express.

[34]  Jesper Mørk,et al.  Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity , 2013 .

[35]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[36]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[37]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[38]  Ying Wu Quantum theory of microcavity-modified fluorescence decay rate under a strong coupling condition , 2000 .

[39]  N. Ledentsov,et al.  Quantum dot heterostructures: Fabrication, properties, lasers (Review) , 1998 .

[40]  Darrick E. Chang,et al.  Quantum nonlinear optics — photon by photon , 2014, Nature Photonics.

[41]  Hua Long,et al.  Rabi Oscillations of Plasmonic Supermodes in Graphene Multilayer Arrays , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  Christian Schneider,et al.  Quantum dot induced phase shift in a pillar microcavity , 2011 .

[43]  C. Hu,et al.  Extended linear regime of cavity-QED enhanced optical circular birefringence induced by a charged quantum dot , 2014, 1409.3787.

[44]  S. Hughes,et al.  Polaron master equation theory of the quantum-dot Mollow triplet in a semiconductor cavity-QED system , 2012 .

[45]  G. Shvets,et al.  Broadband slow light metamaterial based on a double-continuum Fano resonance. , 2010, Physical review letters.

[46]  Masaya Notomi,et al.  Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. , 2013, Optics express.

[47]  S. Höfling,et al.  Control of the strong light-matter interaction between an elongated In_{0.3}Ga_{0.7}As quantum dot and a micropillar cavity using external magnetic fields. , 2009, Physical review letters.

[48]  S. Hughes,et al.  Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot: Anharmonic cavity-QED regime , 2011, 1111.3995.

[49]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[50]  E. Waks,et al.  Resonant interactions between a Mollow triplet sideband and a strongly coupled cavity. , 2013, Physical Review Letters.

[51]  S. Koch,et al.  Characterization of strong light-matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy. , 2008, Physical Review Letters.

[52]  C. Schneider,et al.  Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system. , 2010, Nature materials.

[53]  Hua Long,et al.  Numerical Study on Plasmonic Absorption Enhancement by a Rippled Graphene Sheet , 2017, Journal of Lightwave Technology.

[54]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[55]  Hao Xiong,et al.  Higher-order sidebands in optomechanically induced transparency , 2012 .

[56]  Shanhui Fan,et al.  Progress in 2D photonic crystal Fano resonance photonics , 2014 .

[57]  Ying Wu,et al.  Optomechanically induced sum sideband generation. , 2016, Optics express.

[58]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[59]  Ying Wu,et al.  LASING THRESHOLD FOR WHISPERING-GALLERY-MODE MICROSPHERE LASERS , 1999 .

[60]  Chung-Yen Chao,et al.  Biochemical sensors based on polymer microrings with sharp asymmetrical resonance , 2003 .