MizAR 40 for Mizar 40

As a present to Mizar on its 40th anniversary, we develop an AI/ATP system that in 30 seconds of real time on a 14-CPU machine automatically proves 40 % of the theorems in the latest official version of the Mizar Mathematical Library (MML). This is a considerable improvement over previous performance of large-theory AI/ATP methods measured on the whole MML. To achieve that, a large suite of AI/ATP methods is employed and further developed. We implement the most useful methods efficiently, to scale them to the 150000 formulas in MML. This reduces the training times over the corpus to 1–3 seconds, allowing a simple practical deployment of the methods in the online automated reasoning service for the Mizar users (MizAR$\mathbb {A}\mathbb {R}$).

[1]  Cezary Kaliszyk,et al.  HOL(y)Hammer: Online ATP Service for HOL Light , 2013, Math. Comput. Sci..

[2]  Josef Urban,et al.  ATP and Presentation Service for Mizar Formalizations , 2011, Journal of Automated Reasoning.

[3]  Josef Urban Translating Mizar for First Order Theorem Provers , 2003, MKM.

[4]  Cezary Kaliszyk,et al.  Learning-Assisted Automated Reasoning with Flyspeck , 2012, Journal of Automated Reasoning.

[5]  Andrei Voronkov,et al.  First-Order Theorem Proving and Vampire , 2013, CAV.

[6]  Cezary Kaliszyk,et al.  Automated Reasoning Service for HOL Light , 2013, MKM/Calculemus/DML.

[7]  Josef Urban,et al.  MaLARea: a Metasystem for Automated Reasoning in Large Theories , 2007, ESARLT.

[8]  T. Hales Dense Sphere Packings: A Blueprint for Formal Proofs , 2012 .

[9]  Josef Urban,et al.  Overview and Evaluation of Premise Selection Techniques for Large Theory Mathematics , 2012, IJCAR.

[10]  Jasmin Christian Blanchette,et al.  Robust, Semi-Intelligible Isabelle Proofs from ATP Proofs , 2013, PxTP@CADE.

[11]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[12]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[13]  Josef Urban,et al.  Learning from Multiple Proofs: First Experiments , 2012, PAAR@IJCAR.

[14]  Stephan Schulz,et al.  E - a brainiac theorem prover , 2002, AI Commun..

[15]  Josef Urban,et al.  MaLARea SG1- Machine Learner for Automated Reasoning with Semantic Guidance , 2008, IJCAR.

[16]  Jesse Alama,et al.  Premise Selection for Mathematics by Corpus Analysis and Kernel Methods , 2011, Journal of Automated Reasoning.

[17]  Josef Urban,et al.  An Overview of Methods for Large-Theory Automated Theorem Proving , 2011, ATE.

[18]  Tobias Nipkow,et al.  A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.

[19]  Adam Naumowicz,et al.  Mizar in a Nutshell , 2010, J. Formaliz. Reason..

[20]  Josef Urban,et al.  BliStr: The Blind Strategymaker , 2013, GCAI.

[21]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[22]  Cezary Kaliszyk,et al.  Machine Learner for Automated Reasoning 0.4 and 0.5 , 2014, PAAR@IJCAR.

[23]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[24]  Jesse Alama,et al.  Automated and Human Proofs in General Mathematics: An Initial Comparison , 2012, LPAR.

[25]  Sahibsingh A. Dudani The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Cezary Kaliszyk,et al.  Efficient Semantic Features for Automated Reasoning over Large Theories , 2015, IJCAI.

[27]  R. Petit A Tutorial Introduction , 1980 .

[28]  Andrei Voronkov,et al.  Sine Qua Non for Large Theory Reasoning , 2011, CADE.

[29]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[30]  Thomas C. Hales,et al.  Introduction to the Flyspeck Project , 2005, Mathematics, Algorithms, Proofs.

[31]  Josef Urban MPTP – Motivation, Implementation, First Experiments , 2004, Journal of Automated Reasoning.

[32]  Cezary Kaliszyk,et al.  MaSh: Machine Learning for Sledgehammer , 2013, ITP.

[33]  Peter Kulchyski and , 2015 .

[34]  Cezary Kaliszyk,et al.  PRocH: Proof Reconstruction for HOL Light , 2013, CADE.

[35]  Bernhard Schölkopf,et al.  A Tutorial Introduction , 2001 .

[36]  Josef Urban,et al.  MPTP 0.2: Design, Implementation, and Initial Experiments , 2006, Journal of Automated Reasoning.

[37]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[38]  Josef Urban,et al.  Theorem Proving in Large Formal Mathematics as an Emerging AI Field , 2013, Automated Reasoning and Mathematics.

[39]  Cezary Kaliszyk,et al.  Stronger Automation for Flyspeck by Feature Weighting and Strategy Evolution , 2013, PxTP@CADE.

[40]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[41]  Petr Sojka,et al.  Software Framework for Topic Modelling with Large Corpora , 2010 .