Simplicial flat norm with scale

We study the multiscale simplicial flat norm (MSFN) problem, which computes flat norm at various scales of sets defined as oriented subcomplexes of finite simplicial complexes in arbitrary dimensions. We show that the multiscale simplicial flat norm is NP-complete when homology is defined over integers. We cast the multiscale simplicial flat norm as an instance of integer linear optimization. Following recent results on related problems, the multiscale simplicial flat norm integer program can be solved in polynomial time by solving its linear programming relaxation, when the simplicial complex satisfies a simple topological condition (absence of relative torsion). Our most significant contribution is the simplicial deformation theorem, which states that one may approximate a general current with a simplicial current while bounding the expansion of its mass. We present explicit bounds on the quality of this approximation, which indicate that the simplicial current gets closer to the original current as we make the simplicial complex finer. The multiscale simplicial flat norm opens up the possibilities of using flat norm to denoise or extract scale information of large data sets in arbitrary dimensions. On the other hand, it allows one to employ the large body of algorithmic results on simplicial complexes to address more general problems related to currents.

[1]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[2]  H. Si Constrained Delaunay tetrahedral mesh generation and refinement , 2010 .

[3]  Chao Chen,et al.  Hardness Results for Homology Localization , 2010, SODA '10.

[4]  Tamal K. Dey,et al.  Optimal homologous cycles, total unimodularity, and linear programming , 2010, STOC '10.

[5]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation (Cambridge Monographs on Applied and Computational Mathematics) , 2006 .

[6]  Harold R. Parks,et al.  Geometric Integration Theory , 2008 .

[7]  Anil N. Hirani,et al.  The least spanning area of a knot and the optimal bounding chain problem , 2010, SoCG '11.

[8]  Henri Poincaré,et al.  Papers on Topology: Analysis Situs and Its Five Supplements , 2010 .

[9]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[10]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[11]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[12]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .

[13]  E. Felten,et al.  A Crystalline Approximation Theorem for Hypersurfaces , 1990 .

[14]  K. Vixie,et al.  TV computes the flat norm for boundaries , 2006 .

[15]  Wotao Yin,et al.  Parametric Maximum Flow Algorithms for Fast Total Variation Minimization , 2009, SIAM J. Sci. Comput..

[16]  Tamal K. Dey,et al.  Edge Contractions and Simplicial Homology , 2013, ArXiv.

[17]  H. Fédérer Geometric Measure Theory , 1969 .

[18]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[19]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[20]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[22]  Thomas J. Asaki,et al.  Multiscale flat norm signatures for shapes and images , 2009 .

[23]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[24]  Frank Morgan,et al.  Geometric Measure Theory A Beginner ’ s Guide Fourth Edition , 2008 .

[25]  Vin de Silva,et al.  Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology , 2006, Int. J. Robotics Res..

[26]  Kevin R. Vixie,et al.  L1TV Computes the Flat Norm for Boundaries , 2007 .

[27]  Kees Roos,et al.  Degeneracy in interior point methods for linear programming: a survey , 1993, Ann. Oper. Res..

[28]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[29]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[30]  Herbert Edelsbrunner,et al.  Edgewise Subdivision of a Simplex , 2000 .

[31]  G. Dantzig,et al.  Integral Extreme Points , 1968 .

[32]  W. Thurston,et al.  The Computational Complexity of Knot Genus and Spanning Area , 2002, math/0205057.

[33]  H. Whitney Geometric Integration Theory , 1957 .