Theoretical and experimental study of the structural stability of TbPO 4 at high pressures

We have performed a theoretical and experimental study of the structural stability of terbium phosphate at high pressures. Theoretical ab initio total-energy and lattice-dynamics calculations together with x-ray diffraction experiments have allowed us to completely characterize a phase transition at {approx}9.8 GPa from the zircon to the monazite structure. Furthermore, total-energy calculations have been performed to check the relative stability of 17 candidate structures at different pressures and allow us to propose the zircon {yields} monazite {yields} scheelite {yields} SrUO{sub 4}-type sequence of stable structures with increasing pressure. In this sequence, sixfold P coordination is attained for the SrUO{sub 4}-type structure above 64 GPa. The whole sequence of transitions is discussed in association with the high-pressure structural behavior of oxides isomorphic to TbPO{sub 4}.

[1]  J. Parise,et al.  Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures of CaSO4 at high pressure and temperature , 2005 .

[2]  D. Holtstam,et al.  Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields , 2004 .

[3]  Angel Rubio,et al.  High-pressure phases of group-IV, III–V, and II–VI compounds , 2003 .

[4]  A. K. Tyagi,et al.  High pressure behavior of ZrGeO4: A Raman spectroscopic and photoluminescence study , 2009 .

[5]  A. Kontos,et al.  Raman study of tetragonal TbPO4 and observation of a first-order phase transition at high pressure , 2008 .

[6]  Determination of the high-pressure crystal structure of BaWO{sub 4} and PbWO{sub 4} , 2006, cond-mat/0602632.

[7]  F. Manjón,et al.  Pressure effects on the structural and electronic properties of ABX4 scintillating crystals , 2008, 0802.0160.

[8]  A. Muñoz,et al.  Ab initio study of high-pressure structural properties of the LuVO4 and ScVO4 zircon-type orthovanadates , 2009 .

[9]  M. Dion,et al.  Nouvelles familles de phases MIMII2Nb3O10 a feuillets “perovskites” , 1981 .

[10]  O. Tschauner,et al.  Crystal stability and pressure‐induced phase transitions in scheelite AWO4 (A = Ca, Sr, Ba, Pb, Eu) binary oxides. II: Towards a systematic understanding , 2007 .

[11]  A. Romero,et al.  Lattice dynamics of YVO 4 at high pressures , 2010 .

[12]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[13]  Richard M. Martin,et al.  First-Principles Calculation of Stress , 1983 .

[14]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[15]  A. D. Corso,et al.  Phonon dispersions: Performance of the generalized gradient approximation , 1999 .

[16]  F. Manjón,et al.  Theoretical study of the YLiF4 phase transitions under pressure , 2006 .

[17]  R. L. Moreira,et al.  Vibrational spectra of monazite-type rare-earth orthophosphates , 2006 .

[18]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[19]  J. Hermann,et al.  Temperature and Bulk Composition Control on the Growth of Monazite and Zircon During Low-pressure Anatexis (Mount Stafford, Central Australia) , 2006 .

[20]  O. Tschauner,et al.  Crystal stability and pressure‐induced phase transitions in scheelite AWO4 (A = Ca, Sr, Ba, Pb, Eu) binary oxides. I: A review of recent ab initio calculations, ADXRD, XANES, and Raman studies , 2007 .

[21]  R. Hay Monazite and Scheelite Deformation Mechanisms , 2008 .

[22]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[23]  A. M. Saitta,et al.  Six-fold-coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure. , 2007, Nature materials.

[24]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[25]  Y. Meng,et al.  High-pressure stability and compressibility of APO(4) (A = La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation , 2009, 0911.5669.

[26]  T. Cremers,et al.  Single-crystal structure of lead uranate(VI) , 1986 .

[27]  Huaiyong Li,et al.  Bonding characteristics, thermal expansibility, and compressibility of RXO(4) (R = rare earths, X = P, As) within monazite and zircon structures. , 2009, Inorganic chemistry.

[28]  R. Mittal,et al.  Investigation of the phase stability of LuVO4 at high pressure using powder x-ray diffraction measurements and lattice dynamical calculations , 2008 .

[29]  John M. Hughes,et al.  Crystal chemistry of the monazite and xenotime structures , 1995 .

[30]  F. Manjón,et al.  Pressure‐induced structural phase transitions in materials and earth sciences , 2009 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  L. Gracia,et al.  Characterization of the TiSiO4 structure and its pressure-induced phase transformations: density functional theory study , 2009 .

[33]  A. Polian,et al.  Phase transitions in wolframite-type CdWO 4 at high pressure studied by Raman spectroscopy and density-functional theory , 2009 .

[34]  Lynn A. Boatner,et al.  Thermochemistry of rare-earth orthophosphates , 2001 .

[35]  B. N. Wani,et al.  Phase stability of YbVO4 under pressure: In situ x-ray and Raman spectroscopic investigations , 2009 .

[36]  Hans Joachim Eichler,et al.  Tetragonal YPO4 – a novel SRS-active crystal , 2008 .

[37]  J. Bastide Systématique simplifiée des composés ABX4 (X=O2−, F−) et évolution possible de leurs structures cristallines sous pression , 1987 .