Algorithmic theory of random graphs

The theory of random graphs has been mainly concerned with structural properties, in particular the most likely values of various graph invariants – see Bollobas [21]. There has been increasing interest in using random graphs as models for the average case analysis of graph algorithms. In this paper we survey some of the results in this area.

[1]  J. Michael Steele,et al.  Probabilistic and Worst Case Analyses of Classical Problems of Combinatorial Optimization in Euclidean Space , 1990, Math. Oper. Res..

[2]  Ludek Kucera Graphs with Small Chromatic Numbers are Easy to Color , 1989, Inf. Process. Lett..

[3]  Alon Itai,et al.  Maximum Flow in Planar Networks , 1979, SIAM J. Comput..

[4]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[5]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[6]  Jeanette P. Schmidt Probabilistic analysis of strong hypergraph coloring algorithms and the strong chromatic number , 1987, Discret. Math..

[7]  Boris Pittel,et al.  The stable roommates' problem with random preferences , 1993 .

[8]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[9]  E. A. Timofeev On Finding the Expected Length of a Random Minimal Tree , 1989 .

[10]  Noga Alon,et al.  Generating Pseudo-Random Permutations and Maximum Flow Algorithms , 1990, Inf. Process. Lett..

[11]  Colin McDiarmid,et al.  On the Chromatic Number of Random Graphs , 1990, Random Struct. Algorithms.

[12]  Alan M. Frieze,et al.  On the independence and chromatic numbers of random regular graphs , 1992, J. Comb. Theory, Ser. B.

[13]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[14]  Eli Upfal,et al.  Random hypergraph coloring algorithms and the weak chromatic number , 1985, J. Graph Theory.

[15]  C. McDiarmid,et al.  On random minimum length spanning trees , 1989 .

[16]  Noga Alon,et al.  A Spectral Technique for Coloring Random 3-Colorable Graphs , 1997, SIAM J. Comput..

[17]  B. Bollobás The evolution of random graphs , 1984 .

[18]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[19]  Alan M. Frieze Maximum matchings in a class of random graphs , 1986, J. Comb. Theory, Ser. B.

[20]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[21]  Joel H. Spencer,et al.  Sharp concentration of the chromatic number on random graphsGn, p , 1987, Comb..

[22]  Michael J. Fischer,et al.  A Note on the Average Time to Compute Transitive Closures , 1976, ICALP.

[23]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[24]  Pedro G. Gazmuri Independent sets in random sparse graphs , 1984, Networks.

[25]  Ph. G. Kolaitis,et al.  _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .

[26]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[27]  Alan M. Frieze,et al.  Edge-colouring random graphs , 1988, J. Comb. Theory, Ser. B.

[28]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[29]  Geoffrey Grimmett,et al.  The maximal flow through a directed graph with random capacities , 1982 .

[30]  V. G. Kulkarni,et al.  Shortest paths in networks with exponentially distributed arc lengths , 1986, Networks.

[31]  Alan M. Frieze,et al.  Finding hamilton cycles in sparse random graphs , 1987, J. Comb. Theory, Ser. B.

[32]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[33]  Colin McDiarmid,et al.  Determining the Chromatic Number of a Graph , 1979, SIAM J. Comput..

[34]  Rajeev Motwani,et al.  Average-case analysis of algorithms for matchings and related problems , 1994, JACM.

[35]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[36]  B. Pittel On Likely Solutions of a Stable Marriage Problem , 1992 .

[37]  Dorit S. Hochbaum,et al.  A Fast Perfect-Matching Algorithm in Random Graphs , 1990, SIAM J. Discret. Math..

[38]  Ludek Kucera,et al.  Expected Complexity of Graph Partitioning Problems , 1995, Discret. Appl. Math..

[39]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[40]  Alexander H. G. Rinnooy Kan,et al.  Average Case Analysis of a Heuristic for the Assignment Problem , 1994, Math. Oper. Res..

[41]  Herbert S. Wilf,et al.  Backtrack: An O(1) Expected Time Algorithm for the Graph Coloring Problem , 1984, Inf. Process. Lett..

[42]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[43]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[44]  David Avis,et al.  The Probabilistic Analysis of a Heuristic for the Assignment Problem , 1988, SIAM J. Comput..

[45]  R. Karp An Upper Bound on the Expected Cost of an Optimal Assignment , 1987 .

[46]  Quentin F. Stout,et al.  Optimal parallel construction of Hamiltonian cycles and spanning trees in random graphs , 1993, SPAA '93.

[47]  Colin McDiarmid On some conditioning results in the probabilistic analysis of algorithms , 1985, Discret. Appl. Math..

[48]  Bruce A. Reed,et al.  On Total Colorings of Graphs , 1993, J. Comb. Theory, Ser. B.

[49]  Janez Zerovnik A Randomised Heuristical Algorithm for Estimating the Chromatic Number of a Graph , 1989, Inf. Process. Lett..

[50]  Mark Jerrum An analysis of a Monte Carlo algorithm for estimating the permanent , 1993, IPCO.

[51]  Robert E. Tarjan,et al.  Linear Expected-Time Algorithms for Connectivity Problems , 1980, J. Algorithms.

[52]  Alistair Moffat,et al.  An All Pairs Shortest Path Algorithm with Expected Time O(n² log n) , 1987, SIAM J. Comput..

[53]  Claus-Peter Schnorr,et al.  An Algorithm for Transitive Closure with Linear Expected Time , 1978, SIAM J. Comput..

[54]  D. W. MATULA Expose-and-merge exploration and the chromatic number of a random graph , 1987, Comb..

[55]  C. R. Subramanian,et al.  Coloring Random Graphs , 1992, SWAT.

[56]  Eli Shamir,et al.  How many random edges make a graph hamiltonian? , 1983, Comb..

[57]  David Aldous,et al.  A Random Tree Model Associated with Random Graphs , 1990, Random Struct. Algorithms.

[58]  Dorit S. Hochbaum,et al.  Asymptotically Optimal Linear Algorithm for the Minimum k-Cut in a Random Graph , 1990, SIAM J. Discret. Math..

[59]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[60]  Ludek Kucera,et al.  The Greedy Coloring Is a Bad Probabilistic Algorithm , 1991, J. Algorithms.

[61]  Avrim Blum,et al.  Some tools for approximate 3-coloring , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[62]  G. Grimmett,et al.  Surveys in combinatorics 1985: Random flows: network flows and electrical flows through random media , 1985 .

[63]  G. V. Balakin On Random Matrices , 1967 .

[64]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[65]  D. Aldous Asymptotics in the random assignment problem , 1992 .

[66]  D. Bertsimas,et al.  The Minimum Spanning Tree Constant in Geometrical Probability and Under the Independent Model: A Unified Approach , 1992 .

[67]  Gottfried Tinhofer A probabilistic analysis of some greedy cardinality matching algorithms , 1984, Ann. Oper. Res..

[68]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[69]  Edward A. Bender,et al.  A Theoretical Analysis of Backtracking in the Graph Coloring Problem , 1985, J. Algorithms.

[70]  Alan M. Frieze,et al.  On the independence number of random graphs , 1990, Discret. Math..

[71]  Tomasz Luczak,et al.  The chromatic number of random graphs at the double-jump threshold , 1989, Comb..

[72]  C. McDiarmid Achromatic numbers of random graphs , 1982 .

[73]  Robert Davis,et al.  The Expected Length of a Shortest Path , 1993, Inf. Process. Lett..

[74]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..

[75]  Donald L. Miller,et al.  Exact Solution of Large Asymmetric Traveling Salesman Problems , 1991, Science.

[76]  Hans Jürgen Prömel,et al.  Coloring Clique-free Graphs in Linear Expected Time , 1992, Random Struct. Algorithms.

[77]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[78]  Alan M. Frieze,et al.  Generating and Counting Hamilton Cycles in Random Regular Graphs , 1996, J. Algorithms.

[79]  Boris Pittel,et al.  Probabilistic Analysis of an Algorithm in the Theory of Markets in Indivisible Goods , 1995 .

[80]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1993, STOC.

[81]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[82]  G. Grimmett,et al.  On colouring random graphs , 1975 .

[83]  Alan M. Frieze,et al.  On the Independence Number of Random Cubic Graphs , 1994, Random Struct. Algorithms.

[84]  Alan M. Frieze,et al.  Analysis of a simple greedy matching algorithm on random cubic graphs , 1995, SODA '93.

[85]  Jan Karel Lenstra,et al.  Probabilistic analysis of combinatorial algorithms: an annotated bibliography , 1984 .

[86]  C. McDiarmid Clutter percolation and random graphs , 1980 .

[87]  Refael Hassin,et al.  Probabilistic Analysis of the Capacitated Transportation Problem , 1988, Math. Oper. Res..

[88]  Svante Janson,et al.  The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph , 1995, Random Struct. Algorithms.

[89]  Richard M. Karp,et al.  An algorithm to solve the m × n assignment problem in expected time O(mn log n) , 1980, Networks.

[90]  P. Erdos,et al.  On the existence of a factor of degree one of a connected random graph , 1966 .

[91]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[92]  D. J. A. Welsh,et al.  A randomised 3-colouring algorithm , 1989, Discret. Math..

[93]  Alan M. Frieze Parallel Algorithms for Finding Hamilton Cycles in Random Graphs , 1987, Inf. Process. Lett..

[94]  Noam Nisan,et al.  Probabilistic Analysis of Network Flow Algorithms , 1993, Math. Oper. Res..

[95]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.