Ambiguous distance data in the calculation of NMR structures.
暂无分享,去创建一个
[1] M. Nilges,et al. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. , 1994, Journal of molecular biology.
[2] M. Levitt. Protein folding by restrained energy minimization and molecular dynamics. , 1983, Journal of molecular biology.
[3] Stephen W. Fesik,et al. A computer-based protocol for semiautomated assignments and 3D structure determination of proteins , 1994, Journal of biomolecular NMR.
[4] M. Weiss. Distinguishing symmetry-related intramolecular and intermolecular nuclear overhauser effects in a protein by asymmetric isotopic labeling , 1990 .
[5] C. Sander,et al. Quality control of protein models : directional atomic contact analysis , 1993 .
[6] A. Gronenborn,et al. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. , 1988, Protein engineering.
[7] T. Gibson,et al. Three-Dimensional Structure and Stability of the KH Domain: Molecular Insights into the Fragile X Syndrome , 1996, Cell.
[8] M Wilmanns,et al. Structure of the binding site for inositol phosphates in a PH domain. , 1995, The EMBO journal.
[9] T. Gibson,et al. Structure of the dsRNA binding domain of E. coli RNase III. , 1995, The EMBO journal.
[10] M. Nilges,et al. Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMRspectroscopy , 1993, Quarterly Reviews of Biophysics.
[11] H Oschkinat,et al. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. , 1997, Journal of molecular biology.
[12] A. Gronenborn,et al. Determination of three‐dimensional structures of proteins from interproton distance data by hybrid distance geometry‐dynamical simulated annealing calculations , 1988, FEBS letters.
[13] M. Karplus,et al. Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.
[14] C. W. Hilbers,et al. Solution structure of the single‐stranded DNA binding protein of the filamentous Pseudomonas phage Pf3: similarity to other proteins binding to single‐stranded nucleic acids. , 1995, The EMBO journal.
[15] P Herzyk,et al. A reduced representation of proteins for use in restraint satisfaction calculations , 1993, Proteins.
[16] A. Brünger,et al. Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.
[17] A T Brünger,et al. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. , 1997, Journal of magnetic resonance.
[18] W F van Gunsteren,et al. A protein structure from nuclear magnetic resonance data. lac repressor headpiece. , 1985, Journal of molecular biology.
[19] I. Kuntz,et al. [9] Distance geometry , 1989 .
[20] Axel T. Brunger,et al. X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .
[21] K Wüthrich,et al. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints , 1991, Journal of biomolecular NMR.
[22] M Nilges,et al. Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. , 1995, Journal of molecular biology.
[23] J. Thornton,et al. Stereochemical quality of protein structure coordinates , 1992, Proteins.
[24] Kurt Wüthrich,et al. The program ASNO for computer-supported collection of NOE upper distance constraints as input for protein structure determination , 1993 .
[25] Timothy F. Havel. An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. , 1991, Progress in biophysics and molecular biology.
[26] C. Arrowsmith,et al. Solution structure of the tetrameric minimum transforming domain of p53 , 1995, Nature Structural Biology.
[27] M. Sippl. Recognition of errors in three‐dimensional structures of proteins , 1993, Proteins.
[28] Sequence-specific 1H NMR assignments and secondary structure in solution of Escherichia coli trp repressor. , 1990, Biochemistry.
[29] A. Gronenborn,et al. Determination of three‐dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms Circumventing problems associated with folding , 1988, FEBS letters.
[30] M Karplus,et al. Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: application to crambin. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[31] M Karplus,et al. Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli. Combined use of 1H nuclear magnetic resonance and restrained molecular dynamics. , 1985, Journal of molecular biology.
[32] M. Nilges,et al. Sampling Properties of Simulated Annealing and Distance Geometry , 1991 .
[33] Alan S. Stern,et al. A method for determining overall protein fold from NMR distance restraints , 1992 .
[34] W. Braun,et al. Automated assignment of simulated and experimental NOESY spectra of proteins by feedback filtering and self-correcting distance geometry. , 1995, Journal of molecular biology.
[35] P. Kraulis,et al. Protein three-dimensional structure determination and sequence-specific assignment of 13C and 15N-separated NOE data. A novel real-space ab initio approach. , 1994, Journal of molecular biology.
[36] H Nakamura,et al. Intrinsic nature of the three-dimensional structure of proteins as determined by distance geometry with good sampling properties , 1993, Journal of biomolecular NMR.
[37] C. Hilbers,et al. Overcoming the ambiguity problem encountered in the analysis of nuclear overhauser magnetic resonance spectra of symmetric dimer proteins , 1993 .
[38] M Nilges,et al. The solution structure of the Tyr41-->His mutant of the single-stranded DNA binding protein encoded by gene V of the filamentous bacteriophage M13. , 1994, Journal of molecular biology.
[39] M Nilges,et al. A calculation strategy for the structure determination of symmetric demers by 1H NMR , 1993, Proteins.
[40] W. Braun,et al. Distance geometry and related methods for protein structure determination from NMR data , 1987, Quarterly Reviews of Biophysics.
[41] L. Kay,et al. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy , 1995 .
[42] W. Braun,et al. Pattern recognition and self‐correcting distance geometry calculations applied to myohemerythrin , 1994, FEBS letters.
[43] M. Nilges,et al. Calculation of symmetric multimer structures from NMR data using a priori knowledge of the monomer structure, co-monomer restraints, and interface mapping: The case of leucine zippers , 1996, Journal of biomolecular NMR.
[44] A T Brünger,et al. Relaxation matrix refinement of the solution structure of squash trypsin inhibitor. , 1991, Journal of molecular biology.
[45] I D Kuntz,et al. Application of distance geometry to the proton assignment problem , 1993, Biopolymers.
[46] W F van Gunsteren,et al. A structure refinement method based on molecular dynamics in four spatial dimensions. , 1993, Journal of molecular biology.