Linear structure of bipartite permutation graphs and the longest path problem

The class of bipartite permutation graphs is the intersection of two well known graph classes: bipartite graphs and permutation graphs. A complete bipartite decomposition of a bipartite permutation graph is proposed in this note. The decomposition gives a linear structure of bipartite permutation graphs, and it can be obtained in O(n) time, where n is the number of vertices. As an application of the decomposition, we show an O(n) time and space algorithm for finding a longest path in a bipartite permutation graph.

[1]  Vadim V. Lozin,et al.  On the linear structure and clique-width of bipartite permutation graphs , 2003, Ars Comb..

[2]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[3]  Mihalis Yannakakis,et al.  Node-Deletion Problems on Bipartite Graphs , 1981, SIAM J. Comput..

[4]  Ten-Hwang Lai,et al.  Bipartite Permutation Graphs with Application to the Minimum Buffer Size Problem , 1997, Discret. Appl. Math..

[5]  Robert E. Jamison,et al.  The subchromatic number of a graph , 1989, Discret. Math..

[6]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[7]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[8]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[9]  Ryuhei Uehara,et al.  Efficient Algorithms for the Longest Path Problem , 2004, ISAAC.

[10]  David R. Karger,et al.  On approximating the longest path in a graph , 1997, Algorithmica.

[11]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[12]  Rita Casadio,et al.  Algorithms in Bioinformatics, 5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, WABI.

[13]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[14]  Dieter Kratsch,et al.  Bandwidth of Chain Graphs , 1998, Inf. Process. Lett..

[15]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[16]  Franco P. Preparata,et al.  Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems , 1981, Acta Informatica.

[17]  Haiko Müller,et al.  Hamiltonian circuits in chordal bipartite graphs , 1996, Discret. Math..