Large-scale deployment of a rice 6 K SNP array for genetics and breeding applications

[1]  E. Septiningsih,et al.  Identification of QTLs for yield and agronomic traits in rice under stagnant flooding conditions , 2017, Rice.

[2]  E. Septiningsih,et al.  Mapping QTLs for submergence tolerance in rice using a population fixed for SUB1A tolerant allele , 2017, Molecular Breeding.

[3]  G. Gregorio,et al.  SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa) , 2016, Molecular Genetics and Genomics.

[4]  A. Ismail,et al.  Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. , 2016, Annals of botany.

[5]  Kenneth L. McNally,et al.  Corrigendum: Open access resources for genome-wide association mapping in rice , 2016, Nature Communications.

[6]  G. Shabir,et al.  Genetic diversity analysis of Pakistan rice (Oryza sativa) germplasm using multiplexed single nucleotide polymorphism markers , 2015, Genetic Resources and Crop Evolution.

[7]  Nisha Singh,et al.  Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice , 2015, Scientific Reports.

[8]  G. Gregorio,et al.  Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations , 2015, BMC Genetics.

[9]  Michael J. Thomson,et al.  High-Throughput SNP Genotyping to Accelerate Crop Improvement , 2014 .

[10]  R. Terauchi,et al.  Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding , 2014, PLoS biology.

[11]  Xing Wang Deng,et al.  A high-density SNP genotyping array for rice biology and molecular breeding. , 2014, Molecular plant.

[12]  Jing Li,et al.  A whole-genome SNP array (RICE6K) for genomic breeding in rice. , 2014, Plant biotechnology journal.

[13]  Chunlin He,et al.  SNP genotyping: the KASP assay. , 2014, Methods in molecular biology.

[14]  S. Hearne,et al.  Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement , 2013, Molecular Breeding.

[15]  Hang He,et al.  Development of Genomics-based Genotyping Platforms and Their Applications in Rice Breeding This Review Comes from a Themed Issue on Genome Studies and Molecular Genetics Development of Genotyping Platforms Identification of Genetic Variations Controlling Rice Agronomic Traits Genomics-assisted Molec , 2022 .

[16]  A. Sørensen Sequence-based Genotyping for Marker Discovery and Co-dominant Scoring in Germplasm and Populations , 2013 .

[17]  H. Hoekstra,et al.  Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species , 2012, PloS one.

[18]  M. Thomson,et al.  Mapping QTL for heat tolerance at flowering stage in rice using SNP markers , 2012 .

[19]  Kenneth L. McNally,et al.  High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform , 2011, Molecular Breeding.

[20]  Mark H. Wright,et al.  Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa , 2011, Nature communications.

[21]  Hang He,et al.  Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.) , 2011, Theoretical and Applied Genetics.

[22]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[23]  C. Bustamante,et al.  Development of genome-wide SNP assays for rice , 2010 .

[24]  M. Yano,et al.  Core single-nucleotide polymorphisms—a tool for genetic analysis of the Japanese rice population , 2010 .

[25]  Kenneth L. McNally,et al.  Development of a Research Platform for Dissecting Phenotype–Genotype Associations in Rice (Oryza spp.) , 2010, Rice.

[26]  C. Bustamante,et al.  Genomic Diversity and Introgression in O. sativa Reveal the Impact of Domestication and Breeding on the Rice Genome , 2010, PloS one.

[27]  K. Garrett,et al.  A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. , 2010, The New phytologist.

[28]  E. Septiningsih,et al.  Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. , 2009, Annals of botany.

[29]  P. Etter,et al.  Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers , 2008, PloS one.

[30]  Shen Chen,et al.  High-resolution mapping and gene prediction of Xanthomonas Oryzae pv. Oryzae resistance gene Xa7 , 2008, Molecular Breeding.

[31]  R. Reiter,et al.  Molecular Markers in a Commercial Breeding Program , 2007 .

[32]  S. Tanksley,et al.  Microprep protocol for extraction of DNA from tomato and other herbaceous plants , 1995, Plant Molecular Biology Reporter.

[33]  J. Bailey-Serres,et al.  Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice , 2006, Nature.

[34]  Amanda J. Garris,et al.  Genetic Structure and Diversity in Oryza sativa L. , 2005, Genetics.