Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures

The Brown-Resnick max-stable process has proven to be well-suited for modeling extremes of complex environmental processes, but in many applications its likelihood function is intractable and inference must be based on a composite likelihood, thereby preventing the use of classical Bayesian techniques. In this paper we exploit a case in which the full likelihood of a Brown-Resnick process can be calculated, using componentwise maxima and their partitions in terms of individual events, and we propose two new approaches to inference. The first estimates the partitions using declustering, while the second uses random partitions in a Markov chain Monte Carlo algorithm. We use these approaches to construct a Bayesian hierarchical model for extreme low temperatures in northern Fennoscandia.

[1]  A. Davison,et al.  Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.

[2]  Mathieu Ribatet,et al.  Conditional simulation of max-stable processes , 2012, 1208.5376.

[3]  Alan E. Gelfand,et al.  Continuous Spatial Process Models for Spatial Extreme Values , 2010 .

[4]  Miska Luoto,et al.  The meso-scale drivers of temperature extremes in high-latitude Fennoscandia , 2012, Climate Dynamics.

[5]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[6]  Stefano Castruccio,et al.  High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes , 2014, 1411.0086.

[7]  Joeri Rogelj,et al.  IPCC, 2013: Summary for Policymakers , 2013 .

[8]  Richard A. Davis,et al.  The extremogram: a correlogram for extreme events , 2009, 1001.1821.

[9]  Sidney I. Resnick,et al.  Extreme values of independent stochastic processes , 1977 .

[10]  T. Virtanen,et al.  Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a Geographical Information System: predictions for current climate and warmer climate scenarios , 1998 .

[11]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[12]  T. Opitz,et al.  Extremal tt processes: Elliptical domain of attraction and a spectral representation , 2012, J. Multivar. Anal..

[13]  Saralees Nadarajah Multivariate declustering techniques , 2001 .

[14]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[15]  C. Klüppelberg,et al.  Anisotropic Brown-Resnick space-time processes: estimation and model assessment , 2015, 1503.06049.

[16]  Alan E. Gelfand,et al.  Hierarchical modeling for extreme values observed over space and time , 2009, Environmental and Ecological Statistics.

[17]  Stuart G. Coles,et al.  Spatial Regression Models for Extremes , 1999 .

[18]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[19]  Jonathan A. Tawn,et al.  Exploiting occurrence times in likelihood inference for componentwise maxima , 2005 .

[20]  Exact simulation of Brown-Resnick random fields , 2014 .

[21]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[22]  Anthony C. Davison,et al.  Extremes on river networks , 2015, 1501.02663.

[23]  Montserrat Fuentes,et al.  Nonparametric spatial models for extremes: application to extreme temperature data , 2013, Extremes.

[24]  M. Schlather,et al.  Estimation of Hüsler–Reiss distributions and Brown–Resnick processes , 2012, 1207.6886.

[25]  A. B. Dieker,et al.  Exact simulation of Brown-Resnick random fields at a finite number of locations , 2014, 1406.5624.

[26]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[27]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[28]  B. Shaby,et al.  The Open-Faced Sandwich Adjustment for MCMC Using Estimating Functions , 2012, 1204.3687.

[29]  Laurens de Haan,et al.  Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.

[30]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[31]  Richard L. Smith,et al.  MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .

[32]  Anthony C. Davison,et al.  Modelling Time Series Extremes , 2012 .

[33]  J. L. Wadsworth,et al.  On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions , 2014, 1410.6733.

[34]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[35]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .

[36]  J. Tawn,et al.  Efficient inference for spatial extreme value processes associated to log-Gaussian random functions , 2014 .

[37]  Mathieu Ribatet,et al.  Spatial extremes: Max-stable processes at work , 2013 .

[38]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[39]  B. Shaby,et al.  Bayesian spatial extreme value analysis to assess the changing risk of concurrent high temperatures across large portions of European cropland , 2012 .

[40]  Aristidis K. Nikoloulopoulos,et al.  Extreme value properties of multivariate t copulas , 2009 .

[41]  Thomas Opitz,et al.  Efficient inference and simulation for elliptical Pareto processes , 2013, 1401.0168.

[42]  A. Stephenson HIGH‐DIMENSIONAL PARAMETRIC MODELLING OF MULTIVARIATE EXTREME EVENTS , 2009 .

[43]  A. Davison,et al.  Geostatistics of Dependent and Asymptotically Independent Extremes , 2013, Mathematical Geosciences.

[44]  Marc G. Genton,et al.  Non-Stationary Dependence Structures for Spatial Extremes , 2014, 1411.3174.

[45]  Anthony C. Davison,et al.  Geostatistics of extremes , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  A. Davison,et al.  Composite likelihood estimation for the Brown–Resnick process , 2013 .

[47]  J. Teugels,et al.  Statistics of Extremes , 2004 .