Adaptive wavelet-based estimator of the memory parameter for stationary Gaussian processes
暂无分享,去创建一个
[1] R. J. Bhansalia,et al. Estimation of the memory parameter by fitting fractionally differenced autoregressive models , 2006 .
[2] Murad S. Taqqu,et al. Theory and applications of long-range dependence , 2003 .
[3] Patrice Abry,et al. Long‐range Dependence: Revisiting Aggregation with Wavelets , 1998 .
[4] Yixiao Sun,et al. Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence , 2002 .
[5] P. Robinson. Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .
[6] Patrick Flandrin,et al. Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.
[7] Jean-Marc Bardet,et al. Wavelet Estimator of Long-Range Dependent Processes , 2000 .
[8] Liudas Giraitis,et al. Adaptive Semiparametric Estimation of the Memory Parameter , 2000 .
[9] Liudas Giraitis,et al. RATE OPTIMAL SEMIPARAMETRIC ESTIMATION OF THE MEMORY PARAMETER OF THE GAUSSIAN TIME SERIES WITH LONG‐RANGE DEPENDENCE , 1997 .
[10] François Roueff,et al. On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.
[11] Patrice Abry,et al. A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.
[12] M. Taqqu,et al. ON THE AUTOMATIC SELECTION OF THE ONSET OF SCALING , 2003 .
[13] Jean-Marc Bardet,et al. Identification of the multiscale fractional Brownian motion with biomechanical applications , 2007, math/0701873.
[14] Jean-Marc Bardet,et al. Testing for the Presence of Self‐Similarity of Gaussian Time Series Having Stationary Increments , 2000 .
[15] Jean-Marc Bardet,et al. Statistical study of the wavelet analysis of fractional Brownian motion , 2002, IEEE Trans. Inf. Theory.
[16] Patrice Abry,et al. Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.