Adaptive wavelet-based estimator of the memory parameter for stationary Gaussian processes

This work is intended as a contribution to a wavelet-based adaptive estimator of the memory parameter in the classical semi-parametric framework for Gaussian stationary processes. In particular we introduce and develop the choice of a data-driven optimal bandwidth. Moreover, we establish a central limit theorem for the estimator of the memory parameter with the minimax rate of convergence (up to a logarithm factor). The quality of the estimators are attested by simulations.

[1]  R. J. Bhansalia,et al.  Estimation of the memory parameter by fitting fractionally differenced autoregressive models , 2006 .

[2]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[3]  Patrice Abry,et al.  Long‐range Dependence: Revisiting Aggregation with Wavelets , 1998 .

[4]  Yixiao Sun,et al.  Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence , 2002 .

[5]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[6]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[7]  Jean-Marc Bardet,et al.  Wavelet Estimator of Long-Range Dependent Processes , 2000 .

[8]  Liudas Giraitis,et al.  Adaptive Semiparametric Estimation of the Memory Parameter , 2000 .

[9]  Liudas Giraitis,et al.  RATE OPTIMAL SEMIPARAMETRIC ESTIMATION OF THE MEMORY PARAMETER OF THE GAUSSIAN TIME SERIES WITH LONG‐RANGE DEPENDENCE , 1997 .

[10]  François Roueff,et al.  On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.

[11]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[12]  M. Taqqu,et al.  ON THE AUTOMATIC SELECTION OF THE ONSET OF SCALING , 2003 .

[13]  Jean-Marc Bardet,et al.  Identification of the multiscale fractional Brownian motion with biomechanical applications , 2007, math/0701873.

[14]  Jean-Marc Bardet,et al.  Testing for the Presence of Self‐Similarity of Gaussian Time Series Having Stationary Increments , 2000 .

[15]  Jean-Marc Bardet,et al.  Statistical study of the wavelet analysis of fractional Brownian motion , 2002, IEEE Trans. Inf. Theory.

[16]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.