Economic optimization of non-sharp separation sequences by means of evolutionary algorithms

Abstract The general distillation sequence synthesis problem featuring the separation of multicomponent feed streams into multicomponent products is addressed. Potential flowsheets include stream bypassing and mixing and use sharp separations as well as non-sharp splits where key component distribution is allowed. Compared to conventional sharp distillation sequence synthesis, this leads to a mixed-integer non-linear programming problem of increased complexity, including non-convexities as well as multi-modalities. Product specifications create additional constraints while simultaneously call for a rigorous modeling of the non-key distribution. A synthesis method is proposed that models the various flowsheet configurations with a new and flexible superstructure concept and connects the gradient-free optimization technique of application-orientedly developed Evolutionary Algorithms (EAs) to the rigorous modeling capabilities of the Aspen Plus ™ simulation system, thus enabling realistic process design and cost objective function calculation. The re-examination of two published examples illustrates the applicability and the potential of the approach.

[1]  C. Pantelides,et al.  Optimal design of thermally coupled distillation columns , 1999 .

[2]  Günter Rudolph,et al.  An Evolutionary Algorithm for Integer Programming , 1994, PPSN.

[3]  C. M. Sheppard,et al.  CONSTRAINT-DIRECTED NON-SHARP SEPARATION SEQUENCE DESIGN , 1991 .

[4]  Johann Stichlmair,et al.  Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming , 1998 .

[5]  Christodoulos A. Floudas Separation synthesis of multicomponent feed streams into multicomponent product streams , 1987 .

[6]  Jose Leboreiro,et al.  Processes synthesis and design of distillation sequences using modular simulators: a genetic algorithm framework , 2004, Comput. Chem. Eng..

[7]  Y. A. Liu,et al.  Studies in chemical process design and synthesis. 8. A simple heuristic method for the synthesis of initial sequences for sloppy multicomponent separations , 1988 .

[8]  Mariana Barttfeld,et al.  Optimal Synthesis of Multicomponent Zeotropic Distillation Processes. 2. Preprocessing Phase and Rigorous Optimization of Efficient Sequences , 2003 .

[9]  Patrick Linke,et al.  Design of Separation Trains and Reaction-Separation Networks Using Stochastic Optimization Methods , 2001 .

[10]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[11]  I. Grossmann,et al.  Global optimization of bilinear process networks with multicomponent flows , 1995 .

[12]  Efstratios N. Pistikopoulos,et al.  Generalized modular representation framework for process synthesis , 1996 .

[13]  Roger W. Thompson,et al.  Systematic synthesis of separation schemes , 1972 .

[14]  Ignacio E. Grossmann,et al.  Part II. Future perspective on optimization , 2004, Comput. Chem. Eng..

[15]  C. M. Sheppard,et al.  ALGORITHMIC SYNTHESIS OF GENERAL NON-SHARP SIMPLE DISTILLATION COLUMN SEQUENCES , 1995 .

[16]  Andreas A. Linninger,et al.  Towards computer‐aided separation synthesis , 2006 .

[17]  Ignacio E. Grossmann,et al.  Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences , 1999 .

[18]  Yan Liu,et al.  Studies in Chemical Process Design and Synthesis. 9. A Unifying Method for the Synthesis of Multicomponent Separation Sequences with Sloppy Product Streams , 1990 .

[19]  Ignacio E. Grossmann,et al.  A decomposition method for synthesizing complex column configurations using tray-by-tray GDP models , 2004, Comput. Chem. Eng..

[20]  Klaus D. Timmerhaus,et al.  Plant design and economics for chemical engineers , 1958 .

[21]  L. T. Fan,et al.  Synthesis of complex separation schemes with stream splitting , 1993 .

[22]  Ignacio E. Grossmann,et al.  Optimal synthesis of complex distillation columns using rigorous models , 2005, Comput. Chem. Eng..

[23]  Eric S. Fraga,et al.  Evaluation of hybrid optimization methods for the optimal design of heat integrated distillation sequences , 2003 .

[24]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[25]  Liu Zhi-Yong,et al.  Matrix-based heuristic synthesis for production of mixed products via sharp distillation sequences with bypass , 1995 .

[26]  Ignacio E. Grossmann,et al.  Optimal feed locations and number of trays for distillation columns with multiple feeds , 1993 .

[27]  I. Grossmann,et al.  A systematic modeling framework of superstructure optimization in process synthesis , 1999 .

[28]  Eric S. Fraga,et al.  An automated procedure for multicomponent product separation synthesis , 1998 .

[29]  Ignacio E. Grossmann,et al.  Alternative representations and formulations for the economic optimization of multicomponent distillation columns , 2003, Comput. Chem. Eng..

[30]  Mike Preuss,et al.  On the Importance of Information Speed in Structured Populations , 2004, PPSN.

[31]  Thomas Bartz-Beielstein,et al.  Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[32]  Frank Hoffmeister,et al.  Problem-Independent Handling of Constraints by Use of Metric Penalty Functions , 1996, Evolutionary Programming.

[33]  C. Floudas,et al.  Synthesis of general distillation sequences : nonsharp separations , 1990 .

[34]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[35]  Ignacio E. Grossmann,et al.  An alternate MINLP model for finding the number of trays required for a specified separation objective , 1993 .

[36]  Michael Emmerich,et al.  Mixed-Integer Evolution Strategy for Chemical Plant Optimization with Simulators , 2000 .

[37]  Zhi-Yong Liu,et al.  Matrix-Based Heuristic Synthesis of Distillation Sequences with Several Feed Streams and Multicomponent Products , 1998 .

[38]  Ignacio E. Grossmann,et al.  New trends in optimization-based approaches to process synthesis , 1996 .

[39]  Fernando P. Bernardo,et al.  Quality costs and robustness criteria in chemical process design optimization , 2001 .

[40]  Piyush B. Shah,et al.  Knowledge based models for the analysis of complex separation processes , 2001 .

[41]  Ignacio E. Grossmann,et al.  Integration of thermodynamic insights and MINLP optimization for the synthesis, design and analysis of process flowsheets , 1999 .

[42]  I. Grossmann,et al.  Mixed-integer nonlinear programming techniques for process systems engineering , 1995 .

[43]  I. Heckl,et al.  Integrated Synthesis of Optimal Separation and Heat Exchanger Networks Involving Separations Based on Various Properties , 2005 .

[44]  Ignacio E. Grossmann,et al.  Design of distillation sequences: from conventional to fully thermally coupled distillation systems , 2004, Comput. Chem. Eng..

[45]  I. C. Parmee Evolutionary design and manufacture : selected papers from ACDM '00 , 2000 .

[46]  Christodoulos A. Floudas,et al.  Synthesis of distillation sequences with several multicomponent feed and product streams , 1988 .

[47]  Bingzhen Chen,et al.  Heuristic synthesis for multicomponent products with simple and sharp separators , 1993 .

[48]  Ignacio E. Grossmann,et al.  Generalized Disjunctive Programming Model for the Optimal Synthesis of Thermally Linked Distillation Columns , 2001 .

[49]  Efstratios N. Pistikopoulos,et al.  Generalized modular framework for the synthesis of heat integrated distillation column sequences , 2005 .

[50]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[51]  Zhi-Yong Liu,et al.  Heuristic procedure for the synthesis of distillation sequences with multicomponent products , 1995 .

[52]  Thomas Bartz-Beielstein,et al.  Algorithm Based Validation of a Simplified Elevator Group Controller Model , 2003 .

[53]  Lorenz T. Biegler,et al.  Distributed stream method for tray optimization , 2002 .

[54]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[55]  Rodolphe L. Motard,et al.  Heuristic synthesis of nonsharp separation sequences , 1988 .

[56]  Masaaki Muraki,et al.  Evolutionary synthesis of a multicomponent multiproduct separation process , 1986 .

[57]  Moo Hwan Kim,et al.  Heat Transfer Characteristics during Mist Cooling on a Heated Cylinder , 2005 .

[58]  Masaaki Muraki,et al.  Synthesis of a multicomponent multiproduct separation process with nonsharp separators , 1988 .

[59]  Ferenc Friedler,et al.  Separation-network synthesis: global optimum through rigorous super-structure , 2000 .

[60]  Arthur W. Westerberg,et al.  An algorithmic procedure for the synthesis of distillation sequences with bypass , 1987 .

[61]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[62]  Piyush B. Shah,et al.  New synthesis framework for the optimization of complex distillation systems , 2002 .

[63]  I. Grossmann,et al.  ADVANCES IN MATHEMATICAL PROGRAMMING FOR THE SYNTHESIS OF PROCESS SYSTEMS , 1999 .

[64]  L. T. Fan,et al.  Separation Sequence Synthesis with Linearly Dependent Products: A Problem Simplification Approach , 1994 .