Investigating the Reactions of BiCl3, a Diiminopyridine Ligand, and Trimethylsilyl Trifluoromethanesulfonate

[1]  Josep Cornella,et al.  Bismuth Redox Catalysis: An Emerging Main-Group Platform for Organic Synthesis , 2022, ACS catalysis.

[2]  P. Salvador,et al.  Unveiling the Electronic Structure of the Bi(+1)/Bi(+3) Redox Couple on NCN and NNN Pincer Complexes , 2021, Inorganic chemistry.

[3]  J. Dutton,et al.  Antimony diiminopyridine complexes. , 2021, Dalton transactions.

[4]  Y. Pang,et al.  Catalytic Hydrodefluorination via Oxidative Addition, Ligand Metathesis, and Reductive Elimination at Bi(I)/Bi(III) Centers , 2021, Journal of the American Chemical Society.

[5]  K. Radacki,et al.  Cationic Bismuth Aminotroponiminates: Charge Controls Redox Properties , 2020, Chemistry.

[6]  Y. Pang,et al.  Catalytic Activation of N2O at a Low-Valent Bismuth Redox Platform , 2020, Journal of the American Chemical Society.

[7]  T. Marks,et al.  Bis-Ferrocenyl-Pyridinediimine Trinuclear Mixed-Valent Complexes with Metal-Binding Dependent Electronic Coupling: Synthesis, Structures, and Redox-Spectroscopic Characterization. , 2020, Journal of the American Chemical Society.

[8]  K. Marczenko,et al.  High Lewis Acidity at Planar, Trivalent, and Neutral Bismuth Centers , 2020 .

[9]  David E. Herbert,et al.  Diiminepyridine-Supported Phosphorus(I) and Phosphorus(III) Complexes: Synthesis, Characterization, and Electrochemistry , 2020 .

[10]  Yunwen Tao,et al.  Hydrogen formation using a synthetic heavier main-group bismuth-based electrocatalyst , 2020 .

[11]  M. Kanatzidis,et al.  Bismuth-The Magic Element. , 2020, Inorganic chemistry.

[12]  Jacqueline Ramler,et al.  Neutral and Cationic Bismuth Compounds: Structure, Heteroaromaticity, and Lewis Acidity of Bismepines. , 2019, Inorganic chemistry.

[13]  A. Venugopal,et al.  Probing the Lewis acidity of heavier pnictogen trichlorides , 2019, Journal of Chemical Sciences.

[14]  T. Hynes,et al.  Periodicity in structure, bonding, and reactivity for p-block complexes of a geometry-constraining triamide ligand. , 2019, Chemistry.

[15]  K. Marczenko,et al.  A Redox-Confused Bismuth(I/III) Triamide with a T-Shaped Planar Ground State. , 2019, Angewandte Chemie.

[16]  O. Planas,et al.  Bi(I)-Catalyzed Transfer-Hydrogenation with Ammonia-Borane , 2019, Journal of the American Chemical Society.

[17]  R. D. Britt,et al.  Electrochemical Reduction of N2 to NH3 at Low Potential by a Molecular Aluminum Complex. , 2018, Chemistry.

[18]  D. Stephan,et al.  Phosphorus Coordination Chemistry in Catalysis: Air Stable P(III)-Dications as Lewis Acid Catalysts for the Allylation of C–F Bonds , 2018, Organometallics.

[19]  Sandeep Kumar,et al.  Consequence of Ligand Bite Angle on Bismuth Lewis Acidity. , 2017, Inorganic chemistry.

[20]  Emily J Thompson,et al.  Electrocatalytic Hydrogen Production by an Aluminum(III) Complex: Ligand-Based Proton and Electron Transfer. , 2015, Angewandte Chemie.

[21]  Louise A. Berben Catalysis by aluminum(III) complexes of non-innocent ligands. , 2015, Chemistry.

[22]  Li'na Xu,et al.  Review: Bismuth complexes: synthesis and applications in biomedicine , 2015 .

[23]  J. Ziller,et al.  Synthesis and Structure of Bis- and Tris-Benzyl Bismuth Complexes , 2015 .

[24]  Emily J Thompson,et al.  Synthesis of square-planar aluminum(III) complexes. , 2014, Angewandte Chemie.

[25]  J. Ziller,et al.  Nitric oxide insertion reactivity with the bismuth-carbon bond: formation of the oximate anion, [ON=(C6H2tBu2O)]-, from the oxyaryl dianion, (C6H2tBu2O)2-. , 2014, Chemistry.

[26]  P. Chirik,et al.  Bis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formation. , 2014, Journal of the American Chemical Society.

[27]  I. Sivaev,et al.  Lewis acidity of boron compounds , 2014 .

[28]  Louise A. Berben,et al.  Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H2 and CO2 , 2014 .

[29]  Michael J. Ferguson,et al.  Coordination complexes of Ph₃Sb²⁺ and Ph₃Bi²⁺: beyond pnictonium cations. , 2014, Angewandte Chemie.

[30]  Scott P. Semproni,et al.  Cobalt-catalyzed C-H borylation. , 2014, Journal of the American Chemical Society.

[31]  Lee Belding,et al.  A coordination compound of Ge(0) stabilized by a diiminopyridine ligand. , 2014, Angewandte Chemie.

[32]  W. Evans,et al.  Bismuth-based cyclic synthesis of 3,5-di-tert-butyl-4-hydroxybenzoic acid via the oxyarylcarboxy dianion, (O2CC6H2(t)Bu2O)2-. , 2014, Dalton transactions.

[33]  J. Flock,et al.  The role of 2,6-diaminopyridine ligands in the isolation of an unprecedented, low-valent tin complex. , 2013, Chemistry.

[34]  J. Ziller,et al.  Insertion of CO2 and COS into Bi-C bonds: reactivity of a bismuth NCN pincer complex of an oxyaryl dianionic ligand, [2,6-(Me2NCH2)2C6H3]Bi(C6H2(t)Bu2O). , 2013, Journal of the American Chemical Society.

[35]  T. Jurca,et al.  Noncovalent interactions of metal cations and arenes probed with thallium(I) complexes. , 2013, Inorganic chemistry.

[36]  Thierry Ollevier New trends in bismuth-catalyzed synthetic transformations. , 2013, Organic & biomolecular chemistry.

[37]  P. Chirik,et al.  High-Selectivity Bis(imino)pyridine Iron Catalysts for the Hydrosilylation of 1,2,4-Trivinylcyclohexane , 2012 .

[38]  N. D. Jones,et al.  Chemistry of the heavy group 15 elements with the pyridyl tethered 1,2-bis(imino)acenaphthene "clamshell" ligand. , 2012, Dalton transactions.

[39]  N. Ignat’ev,et al.  A Convenient Synthesis of Triflate Anion Ionic Liquids and Their Properties , 2012, Molecules.

[40]  Wen‐Hua Sun,et al.  2-[1-(2,6-Dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridyliron(II) dichlorides:Synthesis, characterization and ethylene polymerization behavior , 2012 .

[41]  D. Stalke,et al.  Lewis base mediated autoionization of GeCl2 and SnCl2. , 2012, Journal of the American Chemical Society.

[42]  P. Ragogna,et al.  Reactions of diiminopyridine ligands with chalcogen halides. , 2012, Inorganic chemistry.

[43]  Wen‐Hua Sun,et al.  Controlling the ethylene polymerization parameters in iron pre-catalysts of the type 2-(1-(2,4-dibenzhydryl-6-methylphenylimino)ethyl)-6-(1-(arylimino)ethyl) pyridyliron dichloride , 2012 .

[44]  P. Ragogna,et al.  Substitution matters: isolating phosphorus diiminopyridine complexes. , 2011, Dalton transactions.

[45]  Ming Fang,et al.  Facile bismuth-oxygen bond cleavage, C-H activation, and formation of a monodentate carbon-bound oxyaryl dianion, (C₆H₂(t)Bu₂-3,5-O-4)²⁻. , 2011, Journal of the American Chemical Society.

[46]  J. Ziller,et al.  Bismuth coordination chemistry with allyl, alkoxide, aryloxide, and tetraphenylborate ligands and the {[2,6-(Me2NCH2)2C6H3]2Bi}+ cation. , 2011, Inorganic chemistry.

[47]  H. Kanoh,et al.  Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions , 2010, International journal of molecular sciences.

[48]  F. De Proft,et al.  Monomeric organoantimony(I) and organobismuth(I) compounds stabilized by an NCN chelating ligand: syntheses and structures. , 2010, Angewandte Chemie.

[49]  K. Wieghardt,et al.  Reduced N-alkyl substituted bis(imino)pyridine cobalt complexes: molecular and electronic structures for compounds varying by three oxidation states. , 2010, Inorganic chemistry.

[50]  John E. Bercaw,et al.  NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist , 2010 .

[51]  Libor Dostál,et al.  Structural study on the organoantimony(III) NCN – Chelated compounds [2,6-(Me2NCH2)2C6H3]SbX2 – Influence of the polar group X , 2010 .

[52]  K. Dawson,et al.  Disproportionation and radical formation in the coordination of "GaI" with bis(imino)pyridines. , 2010, Dalton transactions.

[53]  R. Mohan,et al.  Green bismuth. , 2010, Nature chemistry.

[54]  P. Ragogna,et al.  Remarkably stable chalcogen(II) dications. , 2009, Journal of the American Chemical Society.

[55]  Rosendo Valero,et al.  Consistent van der Waals radii for the whole main group. , 2009, The journal of physical chemistry. A.

[56]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[57]  Justin A M Lummiss,et al.  Capturing In+ monomers in a neutral weakly coordinating environment. , 2009, Journal of the American Chemical Society.

[58]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[59]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[60]  P. Novák,et al.  Synthesis and Structural Study of Organoantimony(III) and Organobismuth(III) Triflates and Cations Containing O,C,O-Pincer Type Ligands† , 2007 .

[61]  Gregor Reeske,et al.  Direct reactions of tellurium tetrahalides with chelating nitrogen ligands. Trapping of TeI2 by a 1,2-bis(arylimino)acenaphthene (aryl-BIAN) ligand and C–H activation of an α,α′-diiminopyridine (DIMPY) ligand , 2006 .

[62]  P. Chirik,et al.  Iron-Catalyzed [2π + 2π] Cycloaddition of α,ω-Dienes: The Importance of Redox-Active Supporting Ligands , 2006 .

[63]  Gregor Reeske,et al.  Controlling the oxidation state of arsenic in cyclic arsenic cations. , 2006, Chemical communications.

[64]  P. Budzelaar,et al.  Reaction of the Diimine Pyridine Ligand with Aluminum Alkyls: An Unexpectedly Complex Reaction , 2006 .

[65]  P. Chirik,et al.  Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. , 2004, Journal of the American Chemical Society.

[66]  R. Baker,et al.  The reactivity of gallium(I) and indium(I) halides towards bipyridines, terpyridines, imino-substituted pyridines and bis(imino)acenaphthenes , 2004 .

[67]  P. Budzelaar,et al.  Participation of the alpha,alpha'-diiminopyridine ligand system in reduction of the metal center during alkylation. , 2002, Journal of the American Chemical Society.

[68]  Mark D. Smith,et al.  Syntheses and structures of mono-thiocyanate complexes of cadmium(II) and lead(II) containing bulky nitrogen based polydentate ligands , 2002 .

[69]  Gregory A. Solan,et al.  IRON AND COBALT ETHYLENE POLYMERIZATION CATALYSTS BEARING 2,6-BIS(IMINO)PYRIDYL LIGANDS : SYNTHESIS, STRUCTURES, AND POLYMERIZATION STUDIES , 1999 .

[70]  Maurice Brookhart,et al.  Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene , 1998 .

[71]  Andrew J. P. White,et al.  Novel olefin polymerization catalysts based on iron and cobalt , 1998 .

[72]  E. Duñach,et al.  Bismuth derivatives for the oxidation of organic compounds , 1996 .

[73]  M. Beckett,et al.  A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity , 1996 .

[74]  G. Lawrance Coordinated trifluoromethanesulfonate and fluorosulfate , 1986 .

[75]  V. Gutmann,et al.  The acceptor number — A quantitative empirical parameter for the electrophilic properties of solvents , 1975 .

[76]  Russell S. Drago,et al.  Thermodynamic Evaluation of the Inert Pair Effect , 1958 .

[77]  A. Sommerfeld,et al.  Über den. Zusammenhang des Abschlusses der Elektronengruppen im Atom mit den chemischen Valenzzahlen , 1926 .