Reducing Molecular Shuttling to a Single Dimension.

An analogy with a cart on a roller coaster partially explains the shuttling motion of macrocycles in peptide rotaxanes. Just above the barrier to shuttling, the macrocycle statistically populates the "track" rather than the low-energy "stations" (see the potential energy curve). The dynamics of the movement is described in terms of a simplified one-dimensional model based on the solution of the relevant quantum-mechanical equation. x=position.

[1]  David J. Williams,et al.  Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes , 1997 .

[2]  P. Boyer Energie, Leben und ATP (Nobel-Vortrag) , 1998 .

[3]  David A. Leigh,et al.  “Smart” Rotaxanes: Shape Memory and Control in Tertiary Amide Peptido[2]rotaxanes , 1999 .

[4]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[5]  David A. Leigh,et al.  Glycylglycin‐Rotaxane — Wasserstoffbrückenvermittelte Selbstorganisation synthetischer Peptid‐Rotaxane , 1997 .

[6]  Douglas Philp,et al.  Towards Controllable Molecular Shuttles - 1 , 1992 .

[7]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[8]  Itamar Willner,et al.  Photoswitchable Biomaterials: En Route to Optobioelectronic Systems , 1997 .

[9]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[10]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[11]  John E. Walker,et al.  ATP‐Synthese durch Rotations‐Katalyse (Nobel‐Vortrag) , 1998 .

[12]  T. Ross Kelly,et al.  Auf der Suche nach molekularen Sperrädern , 1997 .

[13]  V. Rotello,et al.  ELECTROCHEMICAL CONTROL OF RECOGNITION PROCESSES. A THREE-COMPONENT MOLECULAR SWITCH , 1997 .

[14]  M. Rice Charged Π-phase kinks in lightly doped polyacetylene , 1979 .

[15]  J. Fraser Stoddart,et al.  Towards Controllable Molecular Shuttles - 3 , 1992 .

[16]  Jens C. Skou Die Identifizierung der Natrium-Kalium-Pumpe (Nobel-Vortrag) , 1998 .

[17]  Alan J. Heeger,et al.  Soliton excitations in polyacetylene , 1980 .

[18]  Jens C Skou,et al.  The Identification of the Sodium-Potassium Pump (Nobel Lecture). , 1998, Angewandte Chemie.

[19]  Sean C. Smith,et al.  Theory of Unimolecular and Recombination Reactions , 1990 .

[20]  Harry W. Gibson,et al.  Poly(urethane/crown ether rotaxane)s with Solvent Switchable Microstructures , 1998 .

[21]  Alexandra M. Z. Slawin,et al.  Glycylglycine Rotaxanes—The Hydrogen Bond Directed Assembly of Synthetic Peptide Rotaxanes , 1997 .

[22]  J. Fraser Stoddart,et al.  Towards controllable molecular shuttles-1 , 1992 .

[23]  T. Ross Kelly,et al.  In Search of Molecular Ratchets , 1997 .

[24]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[25]  Francesco Zerbetto,et al.  Controlling the Frequency of Macrocyclic Ring Rotation in Benzylic Amide [2]Catenanes , 1998 .

[26]  Anthony P. Davis EIN KAMPF GEGEN WINDMUHLEN? DER ZWEITE HAUPTSATZ DER THERMODYNAMIK SIEGT , 1998 .

[27]  Christopher J. Richards,et al.  A metallocene molecular gear , 1997 .

[28]  Christopher L. Brown,et al.  CONTROLLING CATENATIONS, PROPERTIES AND RELATIVE RING-COMPONENT MOVEMENTS IN CATENANES WITH AROMATIC FLUORINE SUBSTITUENTS , 1997 .

[29]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[30]  H. Quast,et al.  The Equilibrium between Localized and Delocalized States of Thermochromic Semibullvalenes and Barbaralanes-Direct Observation of Transition States of Degenerate Cope Rearrangements. , 1999, Angewandte Chemie.

[31]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile” , 1995 .

[32]  Atsushi Ikeda,et al.  Molecular Design of a “Molecular Syringe” Mimic for Metal Cations Using a 1,3-Alternate Calix[4]arene Cavity , 1997 .

[33]  A. P. Davis,et al.  Tilting at Windmills? The Second Law Survives. , 1998, Angewandte Chemie.

[34]  A. Benniston,et al.  Photo- and redox-active [2]rotaxanes and [2]catenanes , 1996 .

[35]  Anthony Harriman,et al.  Photoactive [2]Rotaxanes: Structure and Photophysical Properties of Anthracene- and Ferrocene-Stoppered [2]Rotaxanes , 1995 .

[36]  Piersandro Pallavicini,et al.  ELECTROCHEMICALLY SWITCHED ANION TRANSLOCATION IN A MULTICOMPONENT COORDINATION COMPOUND , 1997 .

[37]  F. Zerbetto,et al.  Quantum-chemical analysis of the propeller-shaped molecule [4,4,4]-propellahexaene. A study in heavy-atom tunneling , 1989 .

[38]  P. Boyer,et al.  Energy, Life, and ATP (Nobel Lecture). , 1998, Angewandte Chemie.

[39]  John E Walker,et al.  ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.

[40]  Francesco Zerbetto,et al.  How do benzylic amide [2]catenane rings rotate? , 1999 .

[41]  H. Quast,et al.  Das Gleichgewicht zwischen lokalisierten und delokalisierten Zuständen thermochromer Semibullvalene und Barbaralane – direkte Beobachtung von Übergangszuständen entarteter Cope‐Umlagerungen , 1999 .

[42]  David J. Williams,et al.  Toward Controllable Molecular Shuttles , 1997 .