Three-Dimensional Magnetic Field and NMR Sensitivity Computations Incorporating Conductivity Anomalies and Variable-Surface Topography

We have developed a numerical algorithm for computing the magnetic field distribution and the nuclear magnetic resonance (NMR) sensitivity function for arbitrary topography overlying a known 3-D conductivity structure. The magnetic vector potential is split into primary and secondary terms. The primary term is obtained using a thin-wire line integral equation that accounts for arbitrary loop shape and position. It allows the singularity of the source field to be effectively removed. The secondary potential is obtained by solving the second-order partial differential equations on an unstructured tetrahedral mesh using the finite element technique. We validate the results of applying our algorithm against an explicit infinite integral solution for circular loops on a layered earth and against the results of applying a commercial simulation tool. The spatially oscillating NMR sensitivity functions to hydrogen protons (i.e., unbounded water molecules) in the sub-surface are computed on a refined unstructured grid. We apply the numerical algorithm to a number of synthetic examples in surface NMR tomography of hydrological relevance.

[1]  Matthew J. Yedlin,et al.  Some refinements on the finite-difference method for 3-D dc resistivity modeling , 1996 .

[2]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[3]  D. J. Bergman,et al.  Nuclear Magnetic Resonance: Petrophysical and Logging Applications , 2011 .

[4]  Peter N. Shive,et al.  Singularity removal: A refinement of resistivity modeling techniques , 1989 .

[5]  Rita Streich,et al.  3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .

[6]  P.R. Bannister Summary of image theory expressions for the quasi-static fields of antennas at or above the earth's surface , 1979, Proceedings of the IEEE.

[7]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[8]  E. Haber,et al.  Fast Simulation of 3D Electromagnetic Problems Using Potentials , 2000 .

[9]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[10]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[11]  Anatoly Legchenko,et al.  A review of the basic principles for proton magnetic resonance sounding measurements , 2002 .

[12]  Oszkar Biro,et al.  Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials , 2001 .

[13]  M. Zhdanov,et al.  Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity , 2006 .

[14]  Michael S. Zhdanov,et al.  Geophysical Electromagnetic Theory and Methods , 2009 .

[15]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[16]  Kerry Key,et al.  2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm , 2007 .

[17]  Eric Balkan Software and Systems , 1985 .

[18]  O. Bíró Edge element formulations of eddy current problems , 1999 .

[19]  E. R. Andrew,et al.  Nuclear Magnetic Resonance , 1955 .

[20]  D. Guptasarma,et al.  New digital linear filters for Hankel J0 and J1 transforms , 1997 .

[21]  H. Frank Morrison,et al.  ELECTROMAGNETIC FIELDS ABOUT A LOOP SOURCE OF CURRENT , 1970 .

[22]  Thomas Günther,et al.  Surface Nuclear Magnetic Resonance Tomography , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[23]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[24]  B. Sh Electromagnetic integral equation approach based on contraction operator and solution optimization in Krylov subspace , 2008 .

[25]  Note on ``Electromagnetic Response of a Large Circular Loop Source on a Layered Earth: A New Computation Method'' by N. P. Singh and T. Mogi , 2006 .

[26]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[27]  O. Shushakov Groundwater NMR in conductive water , 1996 .

[28]  Weng Cho Chew,et al.  Modeling of arbitrary wire antennas above ground , 2000, IEEE Trans. Geosci. Remote. Sens..

[29]  Dragan Poljak,et al.  Advanced Modeling in Computational Electromagnetic Compatibility , 2007 .

[30]  Daniel A. White,et al.  A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids , 2005 .

[31]  R. D. Hibbs,et al.  Electromagnetic induction in three dimensional structures for various source fields. , 1978 .

[32]  Andreas Meister,et al.  Numerik linearer Gleichungssysteme , 1999 .

[33]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[34]  Weichman,et al.  Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[36]  Toru Mogi,et al.  Electromagnetic Response of a Large Circular Loop Source on a Layered Earth: A New Computation Method , 2005 .

[37]  J. Simkin,et al.  An optimal method for 3-D eddy currents , 1983 .