Breaking New Ground in Severe Weather Prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment

AbstractLed by NOAA’s Storm Prediction Center and National Severe Storms Laboratory, annual spring forecasting experiments (SFEs) in the Hazardous Weather Testbed test and evaluate cutting-edge technologies and concepts for improving severe weather prediction through intensive real-time forecasting and evaluation activities. Experimental forecast guidance is provided through collaborations with several U.S. government and academic institutions, as well as the Met Office. The purpose of this article is to summarize activities, insights, and preliminary findings from recent SFEs, emphasizing SFE 2015. Several innovative aspects of recent experiments are discussed, including the 1) use of convection-allowing model (CAM) ensembles with advanced ensemble data assimilation, 2) generation of severe weather outlooks valid at time periods shorter than those issued operationally (e.g., 1–4 h), 3) use of CAMs to issue outlooks beyond the day 1 period, 4) increased interaction through software allowing participants t...

[1]  Jidong Gao,et al.  The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation , 2003 .

[2]  P. Lacarrére,et al.  Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model , 1989 .

[3]  A. Witt,et al.  An Enhanced Hail Detection Algorithm for the WSR-88D , 1998 .

[4]  M. Xue,et al.  3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact , 2006 .

[5]  Harold E. Brooks,et al.  Objective Limits on Forecasting Skill of Rare Events , 2013 .

[6]  Stanley G. Benjamin,et al.  Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) Available in the Weather Research and Forecasting (WRF) Model , 2016 .

[7]  Chia-chiao Lin,et al.  On the Development of Turbulence , 1944 .

[8]  Kathryn R. Fossell,et al.  NCAR’s Experimental Real-Time Convection-Allowing Ensemble Prediction System , 2015 .

[9]  Kristin M. Calhoun,et al.  Evaluation of a Probabilistic Forecasting Methodology for Severe Convective Weather in the 2014 Hazardous Weather Testbed , 2015 .

[11]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[12]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[13]  G. Thompson,et al.  A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone , 2014 .

[14]  S. J. Weiss,et al.  An Overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment , 2012 .

[15]  E. Ebert Ability of a Poor Man's Ensemble to Predict the Probability and Distribution of Precipitation , 2001 .

[16]  James O. Pinto,et al.  Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds , 2006 .

[17]  Harold E. Brooks,et al.  COLLABORATION BETWEEN FORECASTERS AND RESEARCH SCIENTISTS AT THE NSSL AND SPC , 2003 .

[18]  Lans P. Rothfusz,et al.  Next-Generation Severe Weather Forecasting and Communication , 2014 .

[19]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[20]  T. Schmit,et al.  Use of Geostationary Super Rapid Scan Satellite Imagery by the Storm Prediction Center , 2016 .

[21]  Stanley G. Benjamin,et al.  Parameterization of cold-season processes in the MAPS land-surface scheme , 2000 .

[22]  Israel L. Jirak The SPC Storm-Scale Ensemble of Opportunity: Overview and Results from the 2012 Hazardous Weather Testbed Spring Forecasting Experiment , 2012 .

[23]  Israel L. Jirak,et al.  Collaborative Efforts between the United States and United Kingdom to Advance Prediction of High-Impact Weather , 2017 .

[24]  Stanley G. Benjamin,et al.  CONVECTIVE-SCALE WARN-ON-FORECAST SYSTEM: A vision for 2020 , 2009 .

[25]  Jeffrey L. Anderson,et al.  The Data Assimilation Research Testbed: A Community Facility , 2009 .

[26]  James Correia,et al.  Forecasting Tornado Pathlengths Using a Three-Dimensional Object Identification Algorithm Applied to Convection-Allowing Forecasts , 2012 .

[27]  Stanley G. Benjamin,et al.  Performance of Different Soil Model Configurations in Simulating Ground Surface Temperature and Surface Fluxes , 1997 .

[28]  G. Reuter,et al.  Modeling Maximum Hail Size in Alberta Thunderstorms , 2002 .

[29]  Zaviša I. Janić Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model , 2001 .

[30]  Ming Xue,et al.  A Hybrid MPI–OpenMP Parallel Algorithm and Performance Analysis for an Ensemble Square Root Filter Designed for Multiscale Observations , 2013 .

[31]  C. Schwartz,et al.  Characterizing and Optimizing Precipitation Forecasts from a Convection-Permitting Ensemble Initialized by a Mesoscale Ensemble Kalman Filter , 2014 .

[32]  Jeffrey D. Duda,et al.  Using Varied Microphysics to Account for Uncertainty in Warm-Season QPF in a Convection-Allowing Ensemble , 2014 .

[33]  P. Field,et al.  Using operational weather radar to assess high‐resolution numerical weather prediction over the British Isles for a cold air outbreak case‐study , 2014 .

[34]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[35]  Jeffrey L. Anderson A Local Least Squares Framework for Ensemble Filtering , 2003 .

[36]  Curtis R. Alexander High resolution rapid refresh (HRRR): Recent enhancements and evaluation during the 2010 convective season , 2010 .

[37]  Isztar Zawadzki,et al.  On the filtering properties of ensemble averaging for storm-scale precipitation forecasts , 2014 .

[38]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[39]  Burkely T. Gallo,et al.  Forecasting Tornadoes Using Convection-Permitting Ensembles , 2016 .

[40]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[41]  Sujay V. Kumar,et al.  An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF , 2008, Environ. Model. Softw..

[42]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[43]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[44]  Song-You Hong,et al.  Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models , 2010 .

[45]  G. Grell,et al.  A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh , 2016 .

[46]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[47]  Kevin W. Manning,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis , 2004 .

[48]  H. Niino,et al.  An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog , 2006 .

[49]  Harold E. Brooks,et al.  An Objective High-Resolution Hail Climatology of the Contiguous United States , 2012 .

[50]  Ryan E. Jewell,et al.  Evaluation of Alberta Hail Growth Model Using Severe Hail Proximity Soundings from the United States , 2004 .

[51]  E. Aligo Modified Microphysics for Use in High-Resolution NAM Forecasts , 2014 .

[52]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[53]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[54]  Kristin M. Calhoun,et al.  Examination of a Real-Time 3DVAR Analysis System in the Hazardous Weather Testbed , 2014 .

[55]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[56]  P. Mininni,et al.  Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation , 2007 .

[57]  Christopher J. Wilson EVALUATING MULTI-RADAR , MULTI-SENSOR HAIL DIAGNOSIS WITH HIGH RESOLUTION HAIL REPORTS , 2008 .

[58]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[59]  Zavisa Janjic,et al.  Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1 Dynamics , 2012 .

[60]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter , 2005 .

[61]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[62]  Rebecca D. Adams-Selin,et al.  Forecasting Hail Using a One-Dimensional Hail Growth Model within WRF , 2016 .

[63]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[64]  G. Thompson,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization , 2008 .

[65]  W. Menzel,et al.  Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present , 2001 .

[66]  Kevin A. Scharfenberg,et al.  THE SEVERE HAZARDS ANALYSIS AND VERIFICATION EXPERIMENT , 2009 .

[67]  Christopher J. Melick,et al.  Exploration of the NSSL Maximum Expected Size of Hail (MESH) Product for Verifying Experimental Hail Forecasts in the 2014 Spring Forecasting Experiment , 2014 .

[68]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[69]  Fanyou Kong,et al.  Object-Based Evaluation of the Impact of Horizontal Grid Spacing on Convection-Allowing Forecasts , 2013 .

[70]  Richard L. Thompson,et al.  Close Proximity Soundings within Supercell Environments Obtained from the Rapid Update Cycle , 2003 .

[71]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[72]  Marion Mittermaier,et al.  A Strategy for Verifying Near-Convection-Resolving Model Forecasts at Observing Sites , 2014 .

[73]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[74]  Charles A. Doswell,et al.  Climatological Estimates of Local Daily Tornado Probability for the United States , 2018 .

[75]  J. Schaefer The critical success index as an indicator of Warning skill , 1990 .

[76]  Song‐You Hong,et al.  The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) , 2006 .

[77]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[78]  H. Niino,et al.  An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification , 2004 .

[79]  James O. Pinto,et al.  Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme , 2005 .

[80]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[81]  John S. Kain,et al.  Extracting Unique Information from High-Resolution Forecast Models: Monitoring Selected Fields and Phenomena Every Time Step , 2010 .

[82]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests , 2015 .