Polymer nanofiber-guided uniform lithium deposition for battery electrodes.

Lithium metal is one of the most promising candidates as an anode material for next-generation energy storage systems due to its highest specific capacity (3860 mAh/g) and lowest redox potential of all. The uncontrolled lithium dendrite growth that causes a poor cycling performance and serious safety hazards, however, presents a significant challenge for the realization of lithium metal-based batteries. Here, we demonstrate a novel electrode design by placing a three-dimensional (3D) oxidized polyacrylonitrile nanofiber network on top of the current collector. The polymer fiber with polar surface functional groups could guide the lithium ions to form uniform lithium metal deposits confined on the polymer fiber surface and in the 3D polymer layer. We showed stable cycling of lithium metal anode with an average Coulombic efficiency of 97.4% over 120 cycles in ether-based electrolyte at a current density of 3 mA/cm(2) for a total of 1 mAh/cm(2) of lithium.

[1]  Xu Gao,et al.  Green-chemistry Compatible Approach to TiO2-supported PdAu Bimetallic Nanoparticles for Solvent-free 1-Phenylethanol Oxidation under Mild Conditions , 2015, Nano-Micro Letters.

[2]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[3]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[4]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[5]  Yi Cui,et al.  Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface , 2014, Nature Communications.

[6]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[7]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[8]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[9]  Zhengyuan Tu,et al.  Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. , 2014, Angewandte Chemie.

[10]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[11]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[12]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[13]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[14]  L. Archer,et al.  Ionic Liquid‐Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium‐Metal Batteries , 2012, Advanced materials.

[15]  Yi Cui,et al.  Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings , 2012 .

[16]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[17]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[18]  P. Kohl,et al.  Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery , 2011 .

[19]  Seon Joo Park,et al.  Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. , 2011, ACS nano.

[20]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[21]  B. Dunn,et al.  Protection of lithium metal surfaces using tetraethoxysilane , 2011 .

[22]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[23]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[24]  D. Macfarlane,et al.  On the role of cyclic unsaturated additives on the behaviour of lithium metal electrodes in ionic liquid electrolytes , 2010 .

[25]  Yichun Liu,et al.  Polyacrylonitrile and Carbon Nanofibers with Controllable Nanoporous Structures by Electrospinning , 2009 .

[26]  Jou-Hyeon Ahn,et al.  Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive , 2008 .

[27]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[28]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[29]  A. Yarin,et al.  Co-electrospinning of core-shell fibers using a single-nozzle technique. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[30]  G. Kalosakas,et al.  Distribution of bubble lengths in DNA. , 2006, Nano letters.

[31]  G. Somorjai,et al.  Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. , 2006, The journal of physical chemistry. B.

[32]  Zhi‐Kang Xu,et al.  Leaching of PVP from polyacrylonitrile/PVP blending membranes: A comparative study of asymmetric and dense membranes , 2006 .

[33]  Wan Lingshu,et al.  ポリアクリロニトリル/PVPブレンド膜からのPVPの浸出 非対称膜とち密膜の比較研究 , 2006 .

[34]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[35]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[36]  Liu Jie,et al.  Evolution of structure and properties of PAN precursors during their conversion to carbon fibers , 2003 .

[37]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[38]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[39]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[40]  K. Kanamura,et al.  Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution‐Deposition Cycles , 1999 .

[41]  K. Tashiro,et al.  Mechanism and Kinetics of Stabilization Reactions of Polyacrylonitrile and Related Copolymers IV. Effects of Atmosphere on Isothermal DSC Thermograms and FT-IR Spectral Changes during Stabilization Reaction of Acrylonitrile/Methacrylic Acid Copolymer , 1998 .

[42]  M. Ishikawa,et al.  In situ scanning vibrating electrode technique for lithium metal anodes , 1997 .

[43]  Improvement in lithium cycling efficiency by using additives in lithium metal , 1997 .

[44]  Z. Takehara Future prospects of the lithium metal anode , 1997 .

[45]  M. Ishikawa,et al.  In Situ Scanning Vibrating Electrode Technique for the Characterization of Interface Between Lithium Electrode and Electrolytes Containing Additives , 1994 .

[46]  R. Mathur,et al.  IR studies of PAN fibres thermally stabilized at elevated temperatures , 1994 .

[47]  J. Román,et al.  Study of the thermal degradation of poly(N‐vinyl‐2‐pyrrolidone) by thermogravimetry–FTIR , 1993 .

[48]  H. Ohtani,et al.  Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state carbon-13 NMR, and Fourier-transform infrared spectroscopy , 1990 .

[49]  M. Fukuhara,et al.  FT‐IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers , 1986 .

[50]  K. Abraham,et al.  Long cycle life secondary lithium cells utilizing tetrahydrofuran. Technical report , 1984 .

[51]  John H. Bedenbaugh,et al.  Lithium-Methylamine Reduction. I. Reduction of Furan, 2-Methylfuran, and Furfuryl Alcohol , 1970 .