Modulating single-molecule charge transport through external stimulus

[1]  M. Inkpen,et al.  Charge Transport Across Dynamic Covalent Chemical Bridges , 2022, Nano letters.

[2]  Junyang Liu,et al.  Structure Identification for Force-Induced Reaction using Single-Molecule Conductance Measurement , 2022, CCS Chemistry.

[3]  Kun Wang,et al.  Switching the conductance of a single molecule: Lessons from molecular junctions , 2022, MRS Communications.

[4]  Xiao‐Shun Zhou,et al.  Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements , 2022, Biosensors.

[5]  L. Li,et al.  Highly conducting single-molecule topological insulators based on mono- and di-radical cations , 2022, Nature Chemistry.

[6]  Yunpeng Li,et al.  Gating the conductance of a single-molecule junction with ion-π interaction. , 2022, Chemical communications.

[7]  George A. Koutsantonis,et al.  2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions. , 2022, Journal of the American Chemical Society.

[8]  Hao Peng,et al.  Charge transport in molecular junctions: General physical pictures, electrical measurement techniques, and their challenges , 2022, Journal of the Chinese Chemical Society.

[9]  C. Nuckolls,et al.  Increased Molecular Conductance in Oligo[n]phenylene Wires by Thermally Enhanced Dihedral Planarization. , 2022, Nano letters.

[10]  D. Qu,et al.  Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions. , 2022, Journal of the American Chemical Society.

[11]  Deqing Zhang,et al.  Tetrathiafulvalenes as anchors for building highly conductive and mechanically tunable molecular junctions , 2022, Nature Communications.

[12]  Katrin F. Domke,et al.  Electric fields as actuators in unimolecular contacts , 2022, Current Opinion in Electrochemistry.

[13]  Junyang Liu,et al.  Investigation of electronic excited states in single-molecule junctions , 2022, Nano Research.

[14]  Qinghua Zhang,et al.  Dual-gated single-molecule field-effect transistors beyond Moore’s law , 2022, Nature Communications.

[15]  Zhirong Liu,et al.  Stochastic Binding Dynamics of a Photoswitchable Single Supramolecular Complex , 2022, Advanced science.

[16]  Jinlong Yang,et al.  Single-molecule field effect and conductance switching driven by electric field and proton transfer , 2022, Science advances.

[17]  Linghai Xie,et al.  Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes. , 2022, ACS nano.

[18]  A. Vezzoli Mechanoresistive single-molecule junctions. , 2022, Nanoscale.

[19]  Jeffrey S. Moore,et al.  Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. , 2022, Journal of the American Chemical Society.

[20]  D. Qu,et al.  In Situ Monitoring of Transmetallation in Electric Potential-Promoted Oxidative Coupling in a Single-Molecule Junction , 2022, CCS Chemistry.

[21]  Haixing Li,et al.  Control of Molecular Conductance by pH , 2022, Journal of Materials Chemistry C.

[22]  Kun Wang,et al.  Beyond Electrical Conductance: Progress and Prospects in Single-Molecule Junctions , 2022, Journal of Materials Chemistry C.

[23]  Yaping Zang,et al.  Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial π-conjugation , 2021, Science advances.

[24]  M. Ratner,et al.  Tunable Symmetry-Breaking-Induced Dual Functions in Stable and Photoswitched Single-Molecule Junctions. , 2021, Journal of the American Chemical Society.

[25]  Jingxian Yu,et al.  Mechanically Induced Switching between Two Discrete Conductance States: A Potential Single-Molecule Variable Resistor. , 2021, ACS applied materials & interfaces.

[26]  M. Steigerwald,et al.  A single-molecule blueprint for synthesis , 2021, Nature Reviews Chemistry.

[27]  L. Campos,et al.  Destructive quantum interference in heterocyclic alkanes: the search for ultra-short molecular insulators , 2021, Chemical science.

[28]  H. Xia,et al.  Reversible Switching between Destructive and Constructive Quantum Interference Using Atomically Precise Chemical Gating of Single-Molecule Junctions. , 2021, Journal of the American Chemical Society.

[29]  Wenjing Hong,et al.  Single‐Molecule Electrochemical Transistors , 2021, Advanced materials.

[30]  Jingxian Yu,et al.  Temperature-Dependent Tunneling in Furan Oligomer Single-Molecule Junctions. , 2021, ACS sensors.

[31]  B. Tang,et al.  Mechanical single-molecule potentiometers with large switching factors from ortho-pentaphenylene foldamers , 2021, Nature communications.

[32]  K. Houk,et al.  Electric field–catalyzed single-molecule Diels-Alder reaction dynamics , 2021, Science Advances.

[33]  C. Lambert,et al.  Conformation and Quantum-Interference-Enhanced Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives , 2020, ACS sensors.

[34]  M. Steigerwald,et al.  Voltage-Induced Single-Molecule Junction Planarization. , 2020, Nano letters.

[35]  S. Gunasekaran,et al.  Highly nonlinear transport across single-molecule junctions via destructive quantum interference , 2020, Nature Nanotechnology.

[36]  M. Steigerwald,et al.  Cumulene Wires Display Increasing Conductance with Increasing Length. , 2020, Nano letters.

[37]  H. Sadeghi,et al.  Folding a Single-Molecule Junction , 2020, Nano letters.

[38]  Youngsang Kim Photoswitching Molecular Junctions: Platforms and Electrical Properties. , 2020, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  H. Tada,et al.  Mechanical switching of current-voltage characteristics in spiropyran single-molecule junctions. , 2020, Nanoscale.

[40]  B. Tang,et al.  Fabrication and functions of graphene-molecule-graphene single-molecule junctions. , 2020, The Journal of chemical physics.

[41]  Tao Li,et al.  Recent progress in the development of molecular-scale electronics based on photoswitchable molecules , 2020 .

[42]  F. Evers,et al.  Advances and challenges in single-molecule electron transport , 2019, Reviews of Modern Physics.

[43]  Xuefeng Guo,et al.  Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. , 2020, Accounts of chemical research.

[44]  M. Steigerwald,et al.  In situ coupling of single molecules driven by Au-catalyzed electrooxidation. , 2019, Angewandte Chemie.

[45]  M. Steigerwald,et al.  Directing isomerization reactions of cumulenes with electric fields , 2019, Nature Communications.

[46]  Thea R. Pulbrook,et al.  Chemically and Mechanically Controlled Single-Molecule Switches using Spiropyrans. , 2019, ACS applied materials & interfaces.

[47]  C. Lambert,et al.  Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics , 2019, Angewandte Chemie.

[48]  Wenjing Hong,et al.  Application of electrochemistry to single-molecule junctions: from construction to modulation , 2019, Science China Chemistry.

[49]  Z. Tian,et al.  Electric field–induced selective catalysis of single-molecule reaction , 2019, Science Advances.

[50]  J. Thijssen,et al.  Delft University of Technology Single-molecule quantum-transport phenomena in break junctions , 2020 .

[51]  Guangyu Zhang,et al.  Side-group chemical gating via reversible optical and electric control in a single molecule transistor , 2019, Nature Communications.

[52]  Deqing Zhang,et al.  Light-Driven Reversible Intermolecular Proton Transfer at Single-Molecule Junctions. , 2019, Angewandte Chemie.

[53]  J. F. Stoddart,et al.  Concepts in the design and engineering of single-molecule electronic devices , 2019, Nature Reviews Physics.

[54]  C. Lambert,et al.  Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating , 2019, Nature Materials.

[55]  Jeffrey S. Moore,et al.  Intrachain Charge Transport through Conjugated Donor–Acceptor Oligomers , 2019 .

[56]  Junyang Liu,et al.  Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application. , 2018, Accounts of chemical research.

[57]  D. Bowler,et al.  Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport , 2018, Nature Materials.

[58]  Wenjing Hong,et al.  Recent Progress of Break Junction Technique in Single-Molecule Reaction Chemistry , 2019, Acta Physico-Chimica Sinica.

[59]  M. Steigerwald,et al.  Resonant Transport in Single Diketopyrrolopyrrole Junctions. , 2018, Journal of the American Chemical Society.

[60]  Junyang Liu,et al.  Towards single-molecule optoelectronic devices , 2018, Science China Chemistry.

[61]  F. Evers,et al.  Near Length-Independent Conductance in Polymethine Molecular Wires. , 2018, Nano letters.

[62]  C. Nuckolls,et al.  Comprehensive suppression of single-molecule conductance using destructive σ-interference , 2018, Nature.

[63]  S. Fujii,et al.  Single-molecule junctions of π molecules , 2018 .

[64]  Tao Li,et al.  Molecular-scale electronics: From device fabrication to functionality , 2017 .

[65]  M. Steigerwald,et al.  Electronically Transparent Au-N Bonds for Molecular Junctions. , 2017, Journal of the American Chemical Society.

[66]  Daoben Zhu,et al.  Thermally Activated Tunneling Transition in a Photoswitchable Single-Molecule Electrical Junction. , 2017, The journal of physical chemistry letters.

[67]  D. Scarabelli,et al.  Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions. , 2017, Nano letters.

[68]  M. Kamenetska,et al.  Temperature dependent tunneling conductance of single molecule junctions , 2017 .

[69]  Madoka Iwane,et al.  Single-molecule junctions for molecular electronics , 2016 .

[70]  M. Ratner,et al.  Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity , 2016, Science.

[71]  Gordon G. Wallace,et al.  Electrostatic catalysis of a Diels–Alder reaction , 2016, Nature.

[72]  Colin Nuckolls,et al.  Chemical principles of single-molecule electronics , 2016 .

[73]  Kai Wu,et al.  Towards single molecule switches. , 2015, Chemical Society reviews.

[74]  C. Lambert Basic concepts of quantum interference and electron transport in single-molecule electronics. , 2015, Chemical Society reviews.

[75]  E. Leary,et al.  Incorporating single molecules into electrical circuits. The role of the chemical anchoring group. , 2015, Chemical Society reviews.

[76]  T. Wandlowski,et al.  Break junction under electrochemical gating: testbed for single-molecule electronics. , 2015, Chemical Society reviews.

[77]  Zhongfan Liu,et al.  Conductance switching and mechanisms in single-molecule junctions. , 2013, Angewandte Chemie.

[78]  C. Lambert,et al.  Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution. , 2013, Journal of the American Chemical Society.

[79]  L. Venkataraman,et al.  Single-molecule junctions beyond electronic transport. , 2013, Nature nanotechnology.

[80]  R. Eelkema,et al.  Signatures of quantum interference effects on charge transport through a single benzene ring. , 2013, Angewandte Chemie.

[81]  Hao‐Li Zhang,et al.  Construction and Conductance Measurement of Single Molecule Junctions , 2012 .

[82]  Marcel Mayor,et al.  Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions. , 2012, Physical review letters.

[83]  S. J. van der Molen,et al.  Observation of quantum interference in molecular charge transport. , 2011, Nature nanotechnology.

[84]  M. Steigerwald,et al.  A single-molecule potentiometer. , 2011, Nano letters.

[85]  Z. Tian,et al.  Electrochemically assisted fabrication of metal atomic wires and molecular junctions by MCBJ and STM-BJ methods. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[86]  Gang Zhou,et al.  Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. , 2010, Journal of the American Chemical Society.

[87]  S. Louie,et al.  Mechanically controlled binary conductance switching of a single-molecule junction. , 2009, Nature nanotechnology.

[88]  C. Daniel Frisbie,et al.  Electrical Resistance of Long Conjugated Molecular Wires , 2008, Science.

[89]  M. Steigerwald,et al.  Reversible switching in molecular electronic devices. , 2007, Journal of the American Chemical Society.

[90]  Bo Liu,et al.  Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. , 2006, Journal of the American Chemical Society.

[91]  M. Steigerwald,et al.  Dependence of single-molecule junction conductance on molecular conformation , 2006, Nature.

[92]  Yuyuan Tian,et al.  Conductance of single alkanedithiols: conduction mechanism and effect of molecule-electrode contacts. , 2006, Journal of the American Chemical Society.

[93]  James Hone,et al.  Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules , 2006, Science.

[94]  Jun Yu Li,et al.  Electronic decay constant of carotenoid polyenes from single-molecule measurements. , 2005, Journal of the American Chemical Society.

[95]  S. J. van der Molen,et al.  One-way optoelectronic switching of photochromic molecules on gold. , 2003, Physical review letters.

[96]  Yuyuan Tian,et al.  Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions , 2003, Science.

[97]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[98]  Christian Joachim,et al.  Minimal attenuation for tunneling through a molecular wire , 1998 .

[99]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[100]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.