Cage Effects and Diastereomeric Control in the Breaking and Making of Carbon‐Cobalt Bonds in Organocobalt Corrinoids

[1]  X. Zou,et al.  Organic Free Radical-Promoted Isomerization of alpha- and beta-Alkylcobinamides(1). , 1996, Inorganic chemistry.

[2]  H. Marques,et al.  Side Chain Entropy and the Activation of Organocobalamins for Carbon-Cobalt Bond Homolysis: Thermolysis of Neopentylcobalamin-c-monocarboxylate, -c-N-methylamide, -c-N,N-dimethylamide, and -c-N-isopropylamide , 1995 .

[3]  X. Zou,et al.  Side Chain Entropy and Activation of Organocobalamins for Thermal Homolysis: Thermolysis of Neopentyl-13-epi- and Neopentyl-8-epicobalamin in Neutral Aqueous Solution , 1994 .

[4]  B. Wayland,et al.  THERMODYNAMIC AND ACTIVATION PARAMETERS FOR A (PORPHYRINATO)COBALT-ALKYL BOND HOMOLYSIS , 1994 .

[5]  R. Finke,et al.  Adocobalamin (AdoCbl or coenzyme B12) cobalt-carbon bond homolysis radical-cage effects: product, kinetic, mechanistic, and cage efficiency factor (Fc) studies, plus the possibility that coenzyme B12-dependent enzymes function as "ultimate radical cages" and "ultimate radical traps" , 1993 .

[6]  X. Zou,et al.  Facile .alpha./.beta. diastereomerism in organocobalt corrinoids. Synthesis, characterization, and thermolysis of .alpha.-neopentylcobalt corrinoids , 1993 .

[7]  R. Finke,et al.  Radical cage effects in adocobinamide (axial-base-off coenzyme B12): a simple method for trapping [Ado.bul. .bul.CoII] radical pairs. A new .beta.-H elimination product from the radical pair and measurement of an unprecedentedly large cage-recombination efficiency factor, Fc .gtoreq. 0.94 , 1992 .

[8]  X. Zou,et al.  Facile .alpha./.beta. diastereomerism in organocobalt corrinoids: synthesis, characterization, and complete proton and carbon-13 NMR assignments of .alpha.-5'-deoxyadenosylcobinamide and .alpha.-5'-deoxyadenosylcobalamin , 1992 .

[9]  L. Walder,et al.  SN2 or Electron Transfer?? A new technique discriminates the mechanisms of oxidative addition of alkyl halides to corrinato‐ and porphyrinatocobalt(I) , 1992 .

[10]  X. Zou,et al.  Facile .alpha./.beta. diastereomerism in organocobalt corrinoids. Studies of the interconversion of diastereomers by thermolysis, photolysis, and cobalt-to-cobalt alkyl group transfer , 1992 .

[11]  X. Zou,et al.  Facile .alpha./.beta. diastereomerism in organocobalt corrins. Access to minor isomers of alkylcobalt corrinoids by anaerobic photolysis , 1992 .

[12]  K. Brown,et al.  Synthesis, characterization, and acid-induced decomposition of the .alpha.- and .beta.-diastereomers of (2-hydroxyethyl)- and (2-alkoxyethyl)cobalamins and cobinamides , 1992 .

[13]  S. Balt,et al.  A study of the cage mechanism for the homolytic cleavage of the cobalt-carbon bond in coenzyme B12 by varying the solvent viscosity , 1991 .

[14]  X. Zou,et al.  Facile .alpha./.beta. diastereomerism in organocobalt corrins. Evidence for thermodynamic control in the synthesis of alkylcobamides , 1991 .

[15]  L. Marzilli,et al.  Rare .alpha.-alkyl isomers of cobalamins: synthesis, characterization, and properties of two diastereomers of the .alpha.-alkylcobalamin, .alpha.-(2-oxo-1,3-dioxolan-4-yl)cobalamin , 1991 .

[16]  X. Zou,et al.  Facile .alpha./.beta. diastereomerism in organocobalt corrins. Generality of the phenomenon and characterization of additional .alpha.-diastereomers , 1991 .

[17]  K. Brown,et al.  Facile .alpha./.beta. diastereomerism in (2,2,2-trifluoroethyl)cobalt corrins , 1990 .

[18]  B. Hay,et al.  Cage effects in organotransition metal chemistry: their importance in the kinetic estimation of bond dissociation energies in solution , 1988 .

[19]  B. Hay,et al.  Thermolysis of the CoC bond in adenosylcobalamin (coenzyme B12)—IV. Products, kinetics and CoC bond dissociation energy studies in ethylene glycol , 1988 .

[20]  B. Hay,et al.  Thermolysis of the cobalt-carbon bond of adenosylcobalamin. 2. Products, kinetics, and cobalt-carbon bond dissociation energy in aqueous solution , 1986 .

[21]  J. M. Pratt,et al.  The chemistry of vitamin B12. Part 21. Ethynylaquocobinamide: novel reaction of diaquocobinamide with acetylene catalysed by copper ions , 1983 .

[22]  W. Jencks,et al.  Reactions of cyanide with cobalamins , 1979 .

[23]  J. Espenson,et al.  Kinetics and mechanism of the formation of alkylcobalt(chelate) complexes from organic peroxides and cobalt(II) , 1977 .

[24]  H. Hogenkamp,et al.  Carbon-13 nuclear magnetic resonance spectroscopy of cobalamins and cobinamides selectively enriched with carbon-13. , 1973, Journal of the American Chemical Society.

[25]  W. Friedrich,et al.  Zur Koordinations-Isomerie von Kobalt-methyl-Faktor I b und Kobalt-methyl-cobalamin , 1970 .

[26]  J. Nordmeyer,et al.  Zur Koordinations-Isomerie (a-b-Isomerie) der Co-Alkyl-corrinoide , 1969 .

[27]  J. Nordmeyer,et al.  Notizen: Zur Koordinations-Isomerie des Co-Methylcobalamins , 1968 .