Community detection based on strong Nash stable graph partition

[1]  Alain Barrat,et al.  Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys , 2015, PloS one.

[2]  Boleslaw K. Szymanski,et al.  Building Damage-Resilient Dominating Sets in Complex Networks against Random and Targeted Attacks , 2014, Scientific Reports.

[3]  Charalampos E. Tsourakakis,et al.  Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees , 2013, KDD.

[4]  Michal Laclavik,et al.  On community detection in real-world networks and the importance of degree assortativity , 2013, KDD.

[5]  Tuomas Sandholm,et al.  On the complexity of strong Nash equilibrium: Hard-to-solve instances and smoothed complexity , 2013, ArXiv.

[6]  Sergiy Butenko,et al.  On clique relaxation models in network analysis , 2013, Eur. J. Oper. Res..

[7]  Hamidreza Alvari,et al.  Discovering overlapping communities in social networks: A novel game-theoretic approach , 2013, AI Commun..

[8]  Y. Narahari,et al.  A game theory inspired, decentralized, local information based algorithm for community detection in social graphs , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[9]  Jure Leskovec,et al.  Defining and evaluating network communities based on ground-truth , 2012, Knowledge and Information Systems.

[10]  Joshua L. Payne,et al.  The influence of assortativity on the robustness of signal-integration logic in gene regulatory networks. , 2012, Journal of theoretical biology.

[11]  Haris Aziz,et al.  Existence of stability in hedonic coalition formation games , 2012, AAMAS.

[12]  N. Christakis,et al.  Social Networks and Cooperation in Hunter-Gatherers , 2011, Nature.

[13]  Felix Brandt,et al.  Stable partitions in additively separable hedonic games , 2011, AAMAS.

[14]  Mehmet Karakaya,et al.  Hedonic coalition formation games: A new stability notion , 2011, Math. Soc. Sci..

[15]  Wei Chen,et al.  A game-theoretic framework to identify overlapping communities in social networks , 2010, Data Mining and Knowledge Discovery.

[16]  P. Hansen,et al.  Column generation algorithms for exact modularity maximization in networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[18]  Jennifer Badham,et al.  The impact of network clustering and assortativity on epidemic behaviour. , 2010, Theoretical population biology.

[19]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[20]  Mauro Brunato,et al.  On Effectively Finding Maximal Quasi-cliques in Graphs , 2008, LION.

[21]  Randy Thornhill,et al.  Assortative sociality, limited dispersal, infectious disease and the genesis of the global pattern of religion diversity , 2008, Proceedings of the Royal Society B: Biological Sciences.

[22]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[23]  Nicholas R. Jennings,et al.  Coalition Structure Generation : Dynamic Programming Meets Anytime Optimization , 2008 .

[24]  F. Radicchi,et al.  Benchmark graphs for testing community detection algorithms. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  J. Kumpula,et al.  Detecting modules in dense weighted networks with the Potts method , 2008, 0804.3457.

[26]  William Y. C. Chen,et al.  Community Structures of Networks , 2008, Math. Comput. Sci..

[27]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[28]  Takeaki Uno,et al.  An Efficient Algorithm for Enumerating Pseudo Cliques , 2007, ISAAC.

[29]  Kevin W. Boyack,et al.  Dr.L: Distributed Recursive (Graph) Layout , 2007 .

[30]  Haluk Bingol,et al.  Community Detection in Complex Networks Using Agents , 2006, ArXiv.

[31]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[32]  D. Fessler,et al.  Disease avoidance and ethnocentrism: the effects of disease vulnerability and disgust sensitivity on intergroup attitudes , 2006 .

[33]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  J. Leskovec,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[35]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Alessandro Vespignani,et al.  Large scale networks fingerprinting and visualization using the k-core decomposition , 2005, NIPS.

[37]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[38]  A. Arenas,et al.  Community detection in complex networks using extremal optimization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Jason Faulkner,et al.  Evolved Disease-Avoidance Mechanisms and Contemporary Xenophobic Attitudes , 2004 .

[40]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  R. Guimerà,et al.  Modularity from fluctuations in random graphs and complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Lei Zhang,et al.  Task allocation via multi-agent coalition formation: taxonomy, algorithms and complexity , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[43]  M. Newman Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Ana L. N. Fred,et al.  Robust data clustering , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[46]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[47]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[48]  Sandra Sudarsky,et al.  Massive Quasi-Clique Detection , 2002, LATIN.

[49]  M. Newman,et al.  Random Graphs as Models of Networks , 2002, cond-mat/0202208.

[50]  Matthew O. Jackson,et al.  The Stability of Hedonic Coalition Structures , 2002, Games Econ. Behav..

[51]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[53]  Mark E. J. Newman,et al.  Ego-centered networks and the ripple effect , 2001, Soc. Networks.

[54]  James Moody,et al.  Peer influence groups: identifying dense clusters in large networks , 2001, Soc. Networks.

[55]  Balachander Krishnamurthy,et al.  On network-aware clustering of Web clients , 2000, SIGCOMM.

[56]  Sarit Kraus,et al.  Methods for Task Allocation via Agent Coalition Formation , 1998, Artif. Intell..

[57]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[59]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[60]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[61]  P. Erdos,et al.  On the strength of connectedness of a random graph , 1964 .

[62]  Balabhaskar Balasundaram,et al.  A branch-and-bound approach for maximum quasi-cliques , 2014, Ann. Oper. Res..

[63]  W. Alshehri,et al.  Clique relaxation models in social network analysis , 2011 .

[64]  T. Sandholm,et al.  Coalition Structure Generation with Worst CaseGuaranteesTuomas Sandholm 1 , 2007 .

[65]  S. Kanaya,et al.  Prediction of Protein Functions Based on K-Cores of Protein-Protein Interaction Networks and Amino Acid Sequences , 2003 .

[66]  S. Shen-Orr,et al.  Milo , Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[67]  P. ERDbS ON THE STRENGTH OF CONNECTEDNESS OF A RANDOM GRAPH , 2001 .