A common mass scale for satellite galaxies of the Milky Way

The Milky Way has at least twenty-three known satellite galaxies that shine with luminosities ranging from about a thousand to a billion times that of the Sun. Half of these galaxies were discovered in the past few years in the Sloan Digital Sky Survey, and they are among the least luminous galaxies in the known Universe. A determination of the mass of these galaxies provides a test of galaxy formation at the smallest scales and probes the nature of the dark matter that dominates the mass density of the Universe. Here we use new measurements of the velocities of the stars in these galaxies to show that they are consistent with them having a common mass of about 107 within their central 300 parsecs. This result demonstrates that the faintest of the Milky Way satellites are the most dark-matter-dominated galaxies known, and could be a hint of a new scale in galaxy formation or a characteristic scale for the clustering of dark matter.

[1]  STScI,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004 .

[2]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[3]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[4]  M. Feast,et al.  Analysis of Radial Velocities of Stars and Nebulae in the Magellanic Clouds , 1961 .

[5]  R.F.G. Wyse,et al.  Stellar Kinematics in the Remote Leo II Dwarf Spheroidal Galaxy—Another Brick in the Wall , 2007, 0704.3437.

[6]  B. Yanny,et al.  Is Ursa Major II the Progenitor of the Orphan Stream , 2006 .

[7]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[8]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[9]  Simon D. M. White,et al.  Clustering in a neutrino-dominated universe , 1983 .

[10]  Gary A. Mamon,et al.  Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way , 2007 .

[11]  Mario Mateo,et al.  Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy , 2005 .

[12]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[13]  Jeffrey L. Carlin,et al.  Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Boötes , 2006, astro-ph/0606271.

[14]  Global Kinematics of the Globular Cluster M15 , 1997, astro-ph/9711059.

[15]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[16]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[17]  L. Mayer,et al.  Early gas stripping as the origin of the darkest galaxies in the Universe , 2007, Nature.

[18]  A. Loeb,et al.  Suppression of dwarf galaxy formation by cosmic reionization , 2006, Nature.

[19]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[20]  A. McConnachie,et al.  Multiple dynamical components in Local Group dwarf spheroidals , 2006, astro-ph/0608687.

[21]  D. Merritt The Distribution of Dark Matter in the Coma Cluster , 1987 .

[22]  Philippe Fischer,et al.  The Carina dwarf spheroidal galaxy: how dark is it? , 1993 .

[23]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[24]  Mario Mateo,et al.  Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies , 2007, 0708.0010.

[25]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[26]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[27]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[28]  Earth-mass dark-matter haloes as the first structures in the early Universe , 2005, Nature.

[29]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[30]  P. Madau,et al.  The Shapes, Orientation, and Alignment of Galactic Dark Matter Subhalos , 2007, 0705.2037.

[31]  E. Olszewski,et al.  The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and its Effects on the Measured Velocity Dispersions of Dwarf Spheroidals , 1996 .

[32]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[33]  R. Dicke Implications for Cosmology of Stellar and Galactic Evolution Rates , 1962 .

[34]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[35]  G. Illingworth,et al.  The masses of globular clusters. II - Velocity dispersions and mass-to-light ratios , 1976 .

[36]  Slawomir Piatek,et al.  The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies , 1995 .

[37]  Exploring Halo Substructure with Giant Stars. II. Mapping the Extended Structure of the Carina Dwarf Spheroidal Galaxy , 1999, astro-ph/9911191.

[38]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[39]  Gerard Gilmore,et al.  The Kinematics, Orbit, and Survival of the Sagittarius Dwarf Spheroidal Galaxy , 1997 .

[40]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[41]  Michael Kuhlen,et al.  Redefining the Missing Satellites Problem , 2007, 0704.1817.

[42]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[43]  P. Peebles Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations , 1982 .

[44]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: Spectroscopy of Stars in the Galactic Anticenter Stellar Structure , 2003, astro-ph/0307505.

[45]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[46]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[47]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[48]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.