Magnetic circuit for a controllable reactor

Reactive power compensation is vital for obtaining efficient operation of long transmission power lines or cables. A controllable shunt reactor that controls the transmission of power by continuous reactive power compensation will reduce the transmission losses and increase the transmission capacity of active power. We show that the saturation phenomena of iron and the high current density of a high-temperature superconductor can be utilized to design controllable reactors with large dynamic range, low losses, and limited harmonic distortion. We have designed and constructed a small-scale prototype of a controllable shunt reactor with a high-temperature superconductor control winding. We present a simple model of the magnetic circuit of the controllable reactor and we compare calculations from the model to experimental measurements on the controllable reactor