A comprehensive proteogenomic study of the human Brucella vaccine strain 104 M

[1]  D. Pascual,et al.  Brucellosis vaccines for livestock. , 2016, Veterinary immunology and immunopathology.

[2]  Kanika Mahajan,et al.  Characterization and Immunogenicity of Outer Membrane Vesicles from Brucella abortus , 2016, Journal of immunoassay & immunochemistry.

[3]  A. Singh,et al.  Immunogenicity and protective efficacy of Brucella abortus recombinant protein cocktail (rOmp19+rP39) against B. abortus 544 and B. melitensis 16M infection in murine model. , 2016, Molecular immunology.

[4]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[5]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[6]  John R Yates,et al.  Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0 , 2015, Nature Protocols.

[7]  S. Crosson,et al.  Brucella abortus Cell Cycle and Infection Are Coordinated. , 2015, Trends in microbiology.

[8]  A. Zarnani,et al.  Simultaneous immunization of mice with Omp31 and TF provides protection against Brucella melitensis infection. , 2015, Vaccine.

[9]  Tao Zhang,et al.  Experimental Validation of Bacillus anthracis A16R Proteogenomics , 2015, Scientific Reports.

[10]  M. Elfaki,et al.  Host response to Brucella infection: review and future perspective. , 2015, Journal of infection in developing countries.

[11]  A. Lage,et al.  Recent advances in Brucella abortus vaccines , 2015, Veterinary Research.

[12]  R. Bhatnagar,et al.  Recombinant L7/L12 protein entrapping PLGA (poly lactide-co-glycolide) micro particles protect BALB/c mice against the virulent B. abortus 544 infection. , 2015, Vaccine.

[13]  Junjie Yue,et al.  Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation , 2015, Virulence.

[14]  A. Hummon,et al.  Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples , 2015, International journal of molecular sciences.

[15]  Eystein Oveland,et al.  PeptideShaker enables reanalysis of MS-derived proteomics data sets , 2015, Nature Biotechnology.

[16]  Qian Xiong,et al.  Proteogenomic analysis and global discovery of posttranslational modifications in prokaryotes , 2014, Proceedings of the National Academy of Sciences.

[17]  Martin Eisenacher,et al.  The bacterial proteogenomic pipeline , 2014, BMC Genomics.

[18]  A. Zarnani,et al.  Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection. , 2014, Vaccine.

[19]  Pavel A. Pevzner,et al.  Universal database search tool for proteomics , 2014, Nature Communications.

[20]  Philippe Bardou,et al.  jvenn: an interactive Venn diagram viewer , 2014, BMC Bioinformatics.

[21]  S. Burgess,et al.  Proteogenomic mapping of Mycoplasma hyopneumoniae virulent strain 232 , 2014, BMC Genomics.

[22]  M. Palmer,et al.  Advancement of Knowledge of Brucella Over the Past 50 Years , 2014, Veterinary pathology.

[23]  Vineet K. Sharma,et al.  MP3: A Software Tool for the Prediction of Pathogenic Proteins in Genomic and Metagenomic Data , 2014, PloS one.

[24]  Andrew R. Jones,et al.  ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination , 2014, Nature Biotechnology.

[25]  Shivashankar H. Nagaraj,et al.  Proteogenomic Analysis of Bradyrhizobium japonicum USDA110 Using Genosuite, an Automated Multi-algorithmic Pipeline* , 2013, Molecular & Cellular Proteomics.

[26]  Q. Jin,et al.  Analysis of the Secretome and Identification of Novel Constituents from Culture Filtrate of Bacillus Calmette-Guérin Using High-resolution Mass Spectrometry* , 2013, Molecular & Cellular Proteomics.

[27]  M. Doğanay,et al.  Brucella as a potential agent of bioterrorism. , 2013, Recent patents on anti-infective drug discovery.

[28]  Yufei Wang,et al.  Genome Sequences of Three Live Attenuated Vaccine Strains of Brucella Species and Implications for Pathogenesis and Differential Diagnosis , 2012, Journal of bacteriology.

[29]  D. Chattoraj,et al.  Chromosome dynamics in multichromosome bacteria. , 2012, Biochimica et biophysica acta.

[30]  Elena S. Peterson,et al.  VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data , 2012, BMC Genomics.

[31]  Y. Tselentis,et al.  Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. , 2012, Journal of proteome research.

[32]  Dominique Brunel,et al.  SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping , 2012, BMC Genomics.

[33]  H. Lanz-Mendoza,et al.  Comparative proteome analysis of Brucella abortus 2308 and its virB type IV secretion system mutant reveals new T4SS-related candidate proteins. , 2011, Journal of proteomics.

[34]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[35]  Andreas B. den Hartigh,et al.  Interactions of the human pathogenic Brucella species with their hosts. , 2011, Annual review of microbiology.

[36]  Lennart Martens,et al.  SearchGUI: An open‐source graphical user interface for simultaneous OMSSA and X!Tandem searches , 2011, Proteomics.

[37]  Yongqun He,et al.  Protegen: a web-based protective antigen database and analysis system , 2010, Nucleic Acids Res..

[38]  Yongqun He,et al.  Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN , 2010, Immunome research.

[39]  Edgardo Moreno,et al.  Proteomics-based confirmation of protein expression and correction of annotation errors in the Brucella abortus genome , 2010, BMC Genomics.

[40]  G. D. de Souza,et al.  Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv , 2010, BMC Microbiology.

[41]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[42]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[43]  A. Harder,et al.  Proteomic analysis of Brucella suis under oxygen deficiency reveals flexibility in adaptive expression of various pathways , 2009, Proteomics.

[44]  Vlad Popovici,et al.  Selecting control genes for RT-QPCR using public microarray data , 2009, BMC Bioinformatics.

[45]  T. Honda,et al.  Differential replication dynamics for large and small Vibrio chromosomes affect gene dosage, expression and location , 2008, BMC Genomics.

[46]  P. Kearney,et al.  Extensive cell envelope modulation is associated with virulence in Brucella abortus. , 2007, Journal of proteome research.

[47]  S.-W. Zhang,et al.  Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition , 2007, Amino Acids.

[48]  Irini A. Doytchinova,et al.  BMC Bioinformatics BioMed Central Methodology article VaxiJen: a server for prediction of protective antigens, tumour , 2007 .

[49]  M. Washburn,et al.  Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors , 2006, Proceedings of the National Academy of Sciences.

[50]  Yongqun He,et al.  BBP: Brucella genome annotation with literature mining and curation , 2006, BMC Bioinformatics.

[51]  V. DelVecchio,et al.  Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M. , 2006, Journal of proteome research.

[52]  V. Azevedo,et al.  Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system , 2006, Microbial cell factories.

[53]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[54]  R. Ugalde,et al.  Cyclic β-1,2-glucan is a brucella virulence factor required for intracellular survival , 2005, Nature Immunology.

[55]  Jun Yu,et al.  VFDB: a reference database for bacterial virulence factors , 2004, Nucleic Acids Res..

[56]  J. Letesson,et al.  Brucella pathogenesis, genes identified from random large-scale screens. , 2004, FEMS microbiology letters.

[57]  Ron D. Appel,et al.  ExPASy: the proteomics server for in-depth protein knowledge and analysis , 2003, Nucleic Acids Res..

[58]  J. Mekalanos,et al.  Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  V. DelVecchio,et al.  Global analysis of the Brucella melitensis proteome: Identification of proteins expressed in laboratory‐grown culture , 2002, Proteomics.

[60]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[61]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[62]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[63]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[64]  R. Tsolis,et al.  Brucellosis and type IV secretion. , 2012, Future microbiology.

[65]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[66]  R. Apweiler Protein sequence databases. , 2000, Advances in protein chemistry.