A simple randomized algorithm for two-dimensional strip packing

Two-dimensional strip packing problem is to pack given rectangular pieces on a strip of stock sheet having fixed width and infinite height. Its aim is to minimize the height of the strip such that non-guillotinable and fix orientation constraints are meet. In this paper, an improved scoring rule is developed and the least waste priority strategy is introduced, and a randomized algorithm is presented for solving this problem. This algorithm is very simple and does not need to set any parameters. Computational results on a wide range of benchmark problem instances show that the proposed algorithm obtains a better or matching performance as compared to the most of the previously published meta-heuristics.

[1]  S. Martello,et al.  Exact Solution of the Two-Dimensional Finite Bon Packing Problem , 1998 .

[2]  Jan H. van Vuuren,et al.  New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems , 2010, Eur. J. Oper. Res..

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  A. Ramesh Babu,et al.  Effective nesting of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms , 1999 .

[5]  John E. Beasley,et al.  Algorithms for Unconstrained Two-Dimensional Guillotine Cutting , 1985 .

[6]  Cihan H. Dagli,et al.  New approaches to nesting rectangular patterns , 1997, J. Intell. Manuf..

[7]  Joe Marks,et al.  Exhaustive approaches to 2D rectangular perfect packings , 2004, Inf. Process. Lett..

[8]  Daniele Vigo,et al.  Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems , 1999, INFORMS J. Comput..

[9]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[10]  Lijun Wei,et al.  A least wasted first heuristic algorithm for the rectangular packing problem , 2009, Comput. Oper. Res..

[11]  Bernard Chazelle,et al.  The Bottomn-Left Bin-Packing Heuristic: An Efficient Implementation , 1983, IEEE Transactions on Computers.

[12]  S. Jakobs,et al.  European Journal Ofoperational Research on Genetic Algorithms for the Packing of Polygons , 2022 .

[13]  Harald Dyckhoff,et al.  A typology of cutting and packing problems , 1990 .

[14]  P. A. Dearnley Software Development for Microcomputer Data Processing Systems , 1982, Comput. J..

[15]  Daniele Vigo,et al.  An Exact Approach to the Strip-Packing Problem , 2003, INFORMS J. Comput..

[16]  Ramón Alvarez-Valdés,et al.  Reactive GRASP for the strip-packing problem , 2008, Comput. Oper. Res..

[17]  Hongfei Teng,et al.  An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles , 1999, Eur. J. Oper. Res..

[18]  Pearl Y. Wang,et al.  Data set generation for rectangular placement problems , 2001, Eur. J. Oper. Res..

[19]  Ansheng Deng,et al.  A new heuristic recursive algorithm for the strip rectangular packing problem , 2006, Comput. Oper. Res..

[20]  Andrea Lodi,et al.  Two-dimensional packing problems: A survey , 2002, Eur. J. Oper. Res..

[21]  E. Hopper,et al.  An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem , 2001, Eur. J. Oper. Res..

[22]  Graham Kendall,et al.  A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem , 2009, INFORMS J. Comput..

[23]  Nicos Christofides,et al.  An Algorithm for Two-Dimensional Cutting Problems , 1977, Oper. Res..

[24]  Kwang Mong Sim,et al.  A two-stage intelligent search algorithm for the two-dimensional strip packing problem , 2011, Eur. J. Oper. Res..

[25]  Hiroshi Nagamochi,et al.  Exact algorithms for the two-dimensional strip packing problem with and without rotations , 2009, Eur. J. Oper. Res..

[26]  Graham Kendall,et al.  A New Placement Heuristic for the Orthogonal Stock-Cutting Problem , 2004, Oper. Res..

[27]  De-fu Zhang,et al.  An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for the Strip Rectangular Packing Problem , 2007 .

[28]  John E. Beasley,et al.  An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure , 1985, Oper. Res..

[29]  Bengt-Erik Bengtsson,et al.  Packing Rectangular Pieces - A Heuristic Approach , 1982, Comput. J..

[30]  Eva Hopper,et al.  Two-dimensional Packing utilising Evolutionary Algorithms and other Meta-Heuristic Methods , 2002 .

[31]  J. O. Berkey,et al.  Two-Dimensional Finite Bin-Packing Algorithms , 1987 .

[32]  Stephen C. H. Leung,et al.  A fast layer-based heuristic for non-guillotine strip packing , 2011, Expert Syst. Appl..

[33]  Stephen C. H. Leung,et al.  A hybrid simulated annealing metaheuristic algorithm for the two-dimensional knapsack packing problem , 2012, Comput. Oper. Res..

[34]  Zhang De A Bricklaying Heuristic Algorithm for the Orthogonal Rectangular Packing Problem , 2008 .

[35]  Graham Kendall,et al.  A squeaky wheel optimisation methodology for two-dimensional strip packing , 2011, Comput. Oper. Res..

[36]  Gleb Belov,et al.  One-dimensional heuristics adapted for two-dimensional rectangular strip packing , 2008, J. Oper. Res. Soc..

[37]  Andrew Lim,et al.  A skyline heuristic for the 2D rectangular packing and strip packing problems , 2011, Eur. J. Oper. Res..

[38]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[39]  Andreas Bortfeldt,et al.  A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces , 2006, Eur. J. Oper. Res..