Parameter-free robust optimization for the maximum-Sharpe portfolio problem

The list of datasets and competing methods are presented in Tables 1 and 2 respectively. Figure 1 shows simulation results on the value-weighted datasets. The results are qualitatively similar to those in Figure 3 in the manuscript. Figure 2 shows how the average one-year Sharpe ratio of AlphaRob varies with the training sample size n (results are on real-world monthly returns and not simulated returns). For comparison, we also show the results for CS, Min Var (NLS), and Min Var (L2). AlphaRob generally has the best Sharpe ratio or is close to the best. The sole exception is again the 10FFVW dataset. We note that for small n and large p, the robust optimization of CS becomes infeasible for the parameter values suggested by Ceria and Stubbs (2006).

[1]  Michael Hanke,et al.  Comparing large-sample maximum Sharpe ratios and incremental variable testing , 2018, Eur. J. Oper. Res..

[2]  G. Stevens On the Inverse of the Covariance Matrix in Portfolio Analysis , 1995 .

[3]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[4]  Guofu Zhou,et al.  Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies ☆ , 2011 .

[5]  Frank J. Fabozzi,et al.  60 Years of portfolio optimization: Practical challenges and current trends , 2014, Eur. J. Oper. Res..

[6]  Francisco J. Nogales,et al.  Portfolio Selection With Robust Estimation , 2007, Oper. Res..

[7]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[8]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[9]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[10]  J. Jobson,et al.  Estimation for Markowitz Efficient Portfolios , 1980 .

[11]  Geng Deng,et al.  Robust portfolio optimization with Value-at-Risk-adjusted Sharpe ratios , 2013 .

[12]  Carlos M. Fonseca,et al.  An analysis of the Hypervolume Sharpe-Ratio Indicator , 2020, Eur. J. Oper. Res..

[13]  Deepayan Chakrabarti,et al.  Portfolio Construction by Mitigating Error Amplification: The Bounded-Noise Portfolio , 2018, Oper. Res..

[14]  P. Frost,et al.  For better performance , 1988 .

[15]  Ralph E. Steuer,et al.  Robust portfolio optimization: a categorized bibliographic review , 2020, Annals of Operations Research.

[16]  Masao Fukushima,et al.  Portfolio selection under distributional uncertainty: A relative robust CVaR approach , 2010, Eur. J. Oper. Res..

[17]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.

[18]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[19]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[20]  F. Nogales,et al.  Size Matters: Optimal Calibration of Shrinkage Estimators for Portfolio Selection , 2011 .

[21]  It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification , 2012, Journal of Financial and Quantitative Analysis.

[22]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[23]  Peter A. Frost,et al.  An Empirical Bayes Approach to Efficient Portfolio Selection , 1986, Journal of Financial and Quantitative Analysis.

[24]  I. Daubechies,et al.  Sparse and stable Markowitz portfolios , 2007, Proceedings of the National Academy of Sciences.

[25]  Maria Grazia Scutellà,et al.  Robust portfolio asset allocation and risk measures , 2013, Annals of Operations Research.

[26]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[27]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[28]  Chris Kirby,et al.  It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification , 2010, Journal of Financial and Quantitative Analysis.

[29]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[30]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[31]  Ke Yu,et al.  Constraints , 2019, Sexual Selection.

[32]  Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks , 2017 .

[33]  Robert A. Stubbs,et al.  Incorporating estimation errors into portfolio selection: Robust portfolio construction , 2006 .

[34]  Fang Han,et al.  Robust Portfolio Optimization , 2015, NIPS.

[35]  Olivier Ledoit,et al.  Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks , 2017 .

[36]  On the Inverse of the Covariance Matrix in Portfolio Analysis , 1995 .

[37]  Miguel A. Lejeune,et al.  Data-Driven Optimization of Reward-Risk Ratio Measures , 2021, INFORMS J. Comput..

[38]  Berç Rustem,et al.  Robust portfolio optimization with copulas , 2014, Eur. J. Oper. Res..

[39]  B. Scherer Can robust portfolio optimisation help to build better portfolios? , 2007 .

[40]  Reha H. Tütüncü,et al.  Robust Asset Allocation , 2004, Ann. Oper. Res..

[41]  Nalan Gülpinar,et al.  Worst-case robust decisions for multi-period mean-variance portfolio optimization , 2007, Eur. J. Oper. Res..

[42]  Shuzhong Zhang,et al.  Robust portfolio selection based on a multi-stage scenario tree , 2008, Eur. J. Oper. Res..

[43]  Olivier Ledoit,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.

[44]  Maria Grazia Scutellà,et al.  Robust portfolio asset allocation and risk measures , 2013, Ann. Oper. Res..