Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters

[1]  W. Zhang,et al.  Coherent vibrational dynamics of Au144(SR)60 nanoclusters , 2022, Chemical science.

[2]  B. Tang,et al.  Aggregation-induced barrier to oxygen—a new AIE mechanism for metal clusters with phosphorescence , 2021, National science review.

[3]  T. Taketsugu,et al.  Photoluminescence of Doped Superatoms M@Au12 (M = Ru, Rh, Ir) Homoleptically Capped by (Ph2)PCH2P(Ph2): Efficient Room-Temperature Phosphorescence from Ru@Au12. , 2021, Journal of the American Chemical Society.

[4]  R. Jin,et al.  Double-helical assembly of heterodimeric nanoclusters into supercrystals , 2021, Nature.

[5]  T. Tsukuda,et al.  Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges. , 2021, Journal of the American Chemical Society.

[6]  Yu Han,et al.  Multiscale Assembly of [AgS4] Tetrahedrons into Hierarchical Ag–S Networks for Robust Photonic Water , 2021, Advanced materials.

[7]  Xi-Yan Dong,et al.  Shell engineering to achieve modification and assembly of atomically-precise silver clusters. , 2021, Chemical Society reviews.

[8]  Yan Zhu,et al.  Cd-driven surface reconstruction and photodynamics in gold nanoclusters , 2021, Chemical science.

[9]  R. Jin,et al.  Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature , 2021, Science Advances.

[10]  Zhennan Wu,et al.  Aggregation-induced emission in luminescent metal nanoclusters , 2020, National science review.

[11]  T. Hyeon,et al.  Highly Fluorescent Gold Cluster Assembly. , 2020, Journal of the American Chemical Society.

[12]  Michael J. Cowan,et al.  Atom-by-Atom Evolution of the Same Ligand-Protected Au21, Au22, Au22Cd1, and Au24 Nanocluster Series. , 2020, Journal of the American Chemical Society.

[13]  D. Jiang,et al.  Control of single-ligand chemistry on thiolated Au25 nanoclusters , 2020, Nature Communications.

[14]  Jinlong Yang,et al.  Structural Oscillation Revealed in Gold Nanoparticles. , 2020, Journal of the American Chemical Society.

[15]  Xi-Yan Dong,et al.  Extra Silver Atom Triggers Room‐Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters , 2020, Angewandte Chemie.

[16]  Xi-Yan Dong,et al.  Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency , 2020, Science Advances.

[17]  D. Jiang,et al.  Real-time Monitoring of the Dynamic Intra-cluster Diffusion of Single Gold Atoms into Silver Nanoclusters. , 2019, Journal of the American Chemical Society.

[18]  Kevin G. Stamplecoskie,et al.  Robust, Highly Luminescent Au13 Superatoms Protected by N-Heterocyclic Carbenes. , 2019, Journal of the American Chemical Society.

[19]  Zhennan Wu,et al.  Directed Self-Assembly of Ultrasmall Metal Nanoclusters , 2019, ACS Materials Letters.

[20]  R. Jin,et al.  Anomalous phonon relaxation in Au333(SR)79 nanoparticles with nascent plasmons , 2019, Proceedings of the National Academy of Sciences.

[21]  N. Zheng,et al.  Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions , 2019, ACS nano.

[22]  R. Jin,et al.  Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters , 2019, Science.

[23]  Manzhou Zhu,et al.  Tailoring the photoluminescence of atomically precise nanoclusters. , 2019, Chemical Society reviews.

[24]  Jinlong Yang,et al.  Fcc versus Non-fcc Structural Isomerism of Gold Nanoparticles with Kernel Atom Packing Dependent Photoluminescence. , 2019, Angewandte Chemie.

[25]  Douglas R. Kauffman,et al.  A Mono-cuboctahedral Series of Gold Nanoclusters: Photoluminescence Origin, Large Enhancement, Wide Tunability, and Structure-Property Correlation. , 2019, Journal of the American Chemical Society.

[26]  Michael R. Thomas,et al.  Surface Dynamics and Ligand-Core Interactions of Quantum Sized Photoluminescent Gold Nanoclusters. , 2018, Journal of the American Chemical Society.

[27]  N. Zheng,et al.  Surface Chemistry of Atomically Precise Coinage-Metal Nanoclusters: From Structural Control to Surface Reactivity and Catalysis. , 2018, Accounts of chemical research.

[28]  T. Tahara,et al.  Metal-Metal Bond Formations in [Au(CN)2-] n ( n = 3-5) Oligomers in Water Identified by Coherent Nuclear Wavepacket Motions. , 2018, The journal of physical chemistry letters.

[29]  R. Jin,et al.  Molecular-Scale Ligand Effects in Small Gold-Thiolate Nanoclusters. , 2018, Journal of the American Chemical Society.

[30]  M. Roeffaers,et al.  Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites , 2018, Science.

[31]  C. Aikens,et al.  Theoretical Investigation of Relaxation Dynamics in Au38(SH)24 Thiolate-Protected Gold Nanoclusters , 2018, The Journal of Physical Chemistry C.

[32]  R. Jin,et al.  Sharp Transition from Nonmetallic Au246 to Metallic Au279 with Nascent Surface Plasmon Resonance. , 2018, Journal of the American Chemical Society.

[33]  R. Jin,et al.  On the Non-Metallicity of 2.2 nm Au246 (SR)80 Nanoclusters. , 2017, Angewandte Chemie.

[34]  A. Rogach,et al.  In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper Nanocluster/Polymer Composite Films , 2017 .

[35]  P. Chou,et al.  Breaking the Kasha Rule for More Efficient Photochemistry. , 2017, Chemical reviews.

[36]  Yongbo Song,et al.  Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure , 2017, Science Advances.

[37]  T. Pradeep,et al.  Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. , 2017, Chemical reviews.

[38]  R. Jin,et al.  Electron localization in rod-shaped triicosahedral gold nanocluster , 2017, Proceedings of the National Academy of Sciences.

[39]  Xi-Yan Dong,et al.  Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. , 2017, Nature chemistry.

[40]  X. Xia,et al.  Fabrication of Water-Soluble, Green-Emitting Gold Nanoclusters with a 65% Photoluminescence Quantum Yield via Host–Guest Recognition , 2017 .

[41]  R. Jin,et al.  Ultrafast Relaxation Dynamics of Au38(SC2H4Ph)24 Nanoclusters and Effects of Structural Isomerism , 2017 .

[42]  R. Jin,et al.  The tetrahedral structure and luminescence properties of Bi-metallic Pt 1 Ag 28 (SR) 18 (PPh 3 ) 4 nanocluster † , 2017 .

[43]  Yi Gao,et al.  A grand unified model for liganded gold clusters , 2016, Nature Communications.

[44]  T. Pradeep,et al.  Structure-conserving spontaneous transformations between nanoparticles , 2016, Nature Communications.

[45]  M. Roeffaers,et al.  Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. , 2016, Nature materials.

[46]  K. L. D. M. Weerawardene,et al.  Theoretical Insights into the Origin of Photoluminescence of Au25(SR)18(-) Nanoparticles. , 2016, Journal of the American Chemical Society.

[47]  M. Prato,et al.  Permanent excimer superstructures by supramolecular networking of metal quantum clusters , 2016, Science.

[48]  Manas R. Parida,et al.  Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield. , 2016, Angewandte Chemie.

[49]  Yong Pei,et al.  The Nucleation and Growth Mechanism of Thiolate-Protected Au Nanoclusters. , 2015, Journal of the American Chemical Society.

[50]  Jinlong Yang,et al.  Mono-cadmium vs Mono-mercury Doping of Au25 Nanoclusters. , 2015, Journal of the American Chemical Society.

[51]  Ryan T. K. Kwok,et al.  Aggregation-Induced Emission: Together We Shine, United We Soar! , 2015, Chemical reviews.

[52]  Tahei Tahara,et al.  Ultrafast excited-state dynamics of copper(I) complexes. , 2015, Accounts of chemical research.

[53]  Peng Zhang X-ray Spectroscopy of Gold–Thiolate Nanoclusters , 2014 .

[54]  Yongbo Song,et al.  A 200-fold quantum yield boost in the photoluminescence of silver-doped Ag(x)Au(25-x) nanoclusters: the 13th silver atom matters. , 2014, Angewandte Chemie.

[55]  D. Leong,et al.  Identification of a highly luminescent Au22(SG)18 nanocluster. , 2014, Journal of the American Chemical Society.

[56]  T. Tahara,et al.  Real-time observation of tight Au-Au bond formation and relevant coherent motion upon photoexcitation of [Au(CN)2-] oligomers. , 2013, Journal of the American Chemical Society.

[57]  U. Landman,et al.  Ultrastable silver nanoparticles , 2013, Nature.

[58]  Jianping Xie,et al.  From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. , 2012, Journal of the American Chemical Society.

[59]  T. Tahara,et al.  Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy. , 2011, Journal of the American Chemical Society.

[60]  Tahei Tahara,et al.  Coherent nuclear dynamics in ultrafast photoinduced structural change of bis(diimine)copper(I) complex. , 2011, Journal of the American Chemical Society.

[61]  R. Kornberg,et al.  Electronic and vibrational signatures of the Au102(p-MBA)44 cluster. , 2011, Journal of the American Chemical Society.

[62]  R. Jin,et al.  Ultrafast Relaxation Dynamics of [Au25(SR)18]q Nanoclusters: Effects of Charge State , 2010 .

[63]  T. Goodson,et al.  Optically excited acoustic vibrations in quantum-sized monolayer-protected gold clusters. , 2010, ACS nano.

[64]  Z. Zhijun,et al.  Synthesis, electronic structure and optical properties of M BiO 2 Cl ( M =Ca,Sr,Ba) , 2008 .

[65]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[66]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[67]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.