Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria

[1]  Nathan D. Wolfe,et al.  Common and Divergent Immune Response Signaling Pathways Discovered in Peripheral Blood Mononuclear Cell Gene Expression Patterns in Presymptomatic and Clinically Apparent Malaria , 2006, Infection and Immunity.

[2]  D. Kwiatkowski,et al.  Context-specific functional effects of IFNGR1 promoter polymorphism. , 2006, Human molecular genetics.

[3]  C. Nguyen,et al.  Gene-expression profiling discriminates between cerebral malaria (CM)-susceptible mice and CM-resistant mice. , 2006, The Journal of infectious diseases.

[4]  R. Price,et al.  Lung injury in uncomplicated and severe falciparum malaria: a longitudinal study in papua, Indonesia. , 2005, The Journal of infectious diseases.

[5]  M. Vignali,et al.  A protein interaction network of the malaria parasite Plasmodium falciparum , 2005, Nature.

[6]  M. Wahlgren,et al.  Whole-Body Imaging of Sequestration of Plasmodium falciparum in the Rat , 2005, Infection and Immunity.

[7]  H. Ball,et al.  Early Cytokine Production Is Associated with Protection from Murine Cerebral Malaria , 2005, Infection and Immunity.

[8]  C. Ockenhouse,et al.  Genome-Wide Expression Profiling in Malaria Infection Reveals Transcriptional Changes Associated with Lethal and Nonlethal Outcomes , 2005, Infection and Immunity.

[9]  Ivo Que,et al.  Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[11]  J. Ribeiro,et al.  Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions. , 2005, Molecular and biochemical parasitology.

[12]  R. Mott,et al.  Genomewide analysis of the host response to malaria in Kenyan children. , 2005, The Journal of infectious diseases.

[13]  M. D'Ombrain,et al.  The Natural Killer Complex Regulates Severe Malarial Pathogenesis and Influences Acquired Immune Responses to Plasmodium berghei ANKA , 2005, Infection and Immunity.

[14]  Yingyao Zhou,et al.  In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins. , 2005, The Journal of infectious diseases.

[15]  D. Gowda,et al.  Induction of Proinflammatory Responses in Macrophages by the Glycosylphosphatidylinositols of Plasmodium falciparum , 2005, Journal of Biological Chemistry.

[16]  D. Krogstad,et al.  Transcriptome profiles of host gene expression in a monkey model of human malaria. , 2005, The Journal of infectious diseases.

[17]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[18]  B. Frey,et al.  The functional landscape of mouse gene expression , 2004, Journal of biology.

[19]  K. Marsh,et al.  Clinical features and pathogenesis of severe malaria. , 2004, Trends in parasitology.

[20]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[21]  R. Good,et al.  Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria. , 2004, The Journal of infectious diseases.

[22]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[23]  M. Bockarie,et al.  A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Gros,et al.  Pyruvate kinase deficiency in mice protects against malaria , 2003, Nature Genetics.

[25]  N. Hunt,et al.  Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. , 2003, Trends in immunology.

[26]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[27]  D. Kwiatkowski,et al.  Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in The Gambia , 2003, Genes and Immunity.

[28]  P. Gros,et al.  Susceptibility to malaria as a complex trait: big pressure from a tiny creature. , 2002, Human molecular genetics.

[29]  Martin Vingron,et al.  Variance stabilization applied to microarray data calibration and to the quantification of differential expression , 2002, ISMB.

[30]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[31]  N. White,et al.  Malaria and the lung. , 2002, Clinics in chest medicine.

[32]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[33]  E. Riley,et al.  Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. , 2002, Microbes and infection.

[34]  G. Grau,et al.  Pathogenesis of Cerebral Malaria: Recent Experimental Data and Possible Applications for Humans , 2001, Clinical Microbiology Reviews.

[35]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[36]  L. Rénia,et al.  Involvement of IFN‐γ receptor‐mediated signaling in pathology and anti‐malarial immunity induced by Plasmodium berghei infection , 2000 .

[37]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[38]  Lukas Wagner,et al.  A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..

[39]  Q. Cheng,et al.  stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. , 1998, Molecular and biochemical parasitology.

[40]  S. Looareesuwan,et al.  Pulmonary edema in cerebral malaria patients in Thailand. , 1998, The Southeast Asian journal of tropical medicine and public health.

[41]  B. Polack,et al.  Protective role of platelets in chronic (Balb/C) and acute (CBA/J) Plasmodium berghei murine malaria. , 1997, Haemostasis.

[42]  David D. Manning,et al.  Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. , 1996, Journal of immunology.

[43]  R. Snow,et al.  Indicators of life-threatening malaria in African children. , 1995, The New England journal of medicine.

[44]  G. Senaldi,et al.  Role of polymorphonuclear neutrophil leukocytes and their integrin CD11a (LFA-1) in the pathogenesis of severe murine malaria , 1994, Infection and immunity.

[45]  G. Grau,et al.  Profiles of cytokine production in relation with susceptibility to cerebral malaria. , 1993, Journal of immunology.

[46]  N. Hunt,et al.  Pathology of fatal and resolving Plasmodium berghei cerebral malaria in mice , 1992, Parasitology.

[47]  K. Kubát,et al.  Plasmodium berghei: a mouse model for the "sudden death" and "malarial lung" syndromes. , 1983, Experimental parasitology.

[48]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[49]  M. Barrett,et al.  Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. , 2004, Nucleic acids research.

[50]  J. Rest,et al.  Cerebral malaria in inbred mice. I. A new model and its pathology. , 1982, Transactions of the Royal Society of Tropical Medicine and Hygiene.