Enhanced electrochemical performance and durability for direct CH4–CO2 solid oxide fuel cells with an on-cell reforming layer

[1]  S. Kawi,et al.  Recent progress in direct carbon solid oxide fuel cell: Advanced anode catalysts, diversified carbon fuels, and heat management , 2020 .

[2]  B. Chi,et al.  High-performance direct carbon dioxide-methane solid oxide fuel cell with a structure-engineered double-layer anode , 2020 .

[3]  A. Midilli,et al.  Global warming, environmental and sustainability aspects of a geothermal energy based biodigester integrated SOFC system , 2020 .

[4]  Tianyu Zhu,et al.  Review on core-shell structured cathode for intermediate temperature solid oxide fuel cells , 2020 .

[5]  Yanyan Liu,et al.  High-performance Ni in-situ exsolved Ba(Ce0.9Y0.1)0.8Ni0.2O3-δ/Gd0.1Ce0.9O1.95 composite anode for SOFC with long-term stability in methane fuel , 2020 .

[6]  Jingli Luo,et al.  CO2 dry reforming of CH4 with Sr and Ni co-doped LaCrO3 perovskite catalysts , 2020 .

[7]  F. Chen,et al.  Redox-reversible electrode material for direct hydrocarbon solid oxide fuel cells. , 2020, ACS applied materials & interfaces.

[8]  Shanwen Tao,et al.  Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications , 2018 .

[9]  M. Li,et al.  Alternative Fuel Cell Technologies for Cogenerating Electrical Power and Syngas from Greenhouse Gases , 2017 .

[10]  N. Brandon,et al.  Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis. , 2016, Chemical reviews.

[11]  Mariano Martín,et al.  Optimal Process Operation for Biogas Reforming to Methanol: Effects of Dry Reforming and Biogas Composition , 2016 .

[12]  Jian Li,et al.  Novel layered solid oxide fuel cells with multiple-twinned Ni0.8Co0.2 nanoparticles: the key to thermally independent CO2 utilization and power-chemical cogeneration , 2016 .

[13]  Ding Ma,et al.  Methane activation: the past and future , 2014 .

[14]  M. Li,et al.  BaZr0.1Ce0.7Y0.1Yb0.1O3−δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells , 2014 .

[15]  E. R. Losilla,et al.  High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs , 2014 .

[16]  T. M. Gür,et al.  Critical review of carbon conversion in "carbon fuel cells". , 2013, Chemical reviews.

[17]  H. Chandra,et al.  Application of solid oxide fuel cell technology for power generation—A review , 2013 .

[18]  S. Jiang,et al.  Performance and carbon deposition over Pd nanoparticle catalyst promoted Ni/GDC anode of SOFCs in methane, methanol and ethanol fuels , 2012 .

[19]  Meilin Liu,et al.  Rational SOFC material design: new advances and tools , 2011 .

[20]  G. Meng,et al.  Pervoskite-type BaCo0.7Fe0.2Ta0.1O3−δ cathode for proton conducting IT-SOFC , 2010 .

[21]  Nigel P. Brandon,et al.  Thermodynamics and Kinetics of the Interaction of Carbon and Sulfur with Solid Oxide fuel Cell Anodes , 2009 .

[22]  H. Yoo,et al.  Thermoelectric behavior of a mixed ionic electronic conductor, Ce(1-x)GdxO(2-x/2-delta). , 2009, Physical chemistry chemical physics : PCCP.

[23]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐Based Solid Oxide Fuel Cell Anodes: A Review , 2007 .

[24]  Y. Xiong,et al.  Feasibility of Ni-based cermet anode for direct HC SOFCs: Fueling ethane at a low S/C condition to Ni–ScSZ anode-supported cell ☆ , 2006 .

[25]  Scott A. Barnett,et al.  Improving the stability of direct-methane solid oxide fuel cells using anode barrier layers , 2006 .

[26]  S. Barnett,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2005, Science.

[27]  Takashi Hibino,et al.  Ru-catalyzed anode materials for direct hydrocarbon SOFCs , 2003 .

[28]  T. Takagi,et al.  Amorphous carbon layer deposition on plastic film by PSII , 2002 .

[29]  Ryuji Kikuchi,et al.  Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets , 2002 .

[30]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[31]  W. L. Worrell,et al.  Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells , 2002 .

[32]  K. Ahmed,et al.  Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells , 2000 .

[33]  K. D. de Jong,et al.  Carbon Nanofibers: Catalytic Synthesis and Applications , 2000 .

[34]  Mogens Bjerg Mogensen,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[35]  V. Choudhary,et al.  Beneficial effects of cobalt addition to Ni-catalysts for oxidative conversion of methane to syngas , 1997 .

[36]  F. Solymosi The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces , 1991 .

[37]  Rak-Hyun Song,et al.  Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review , 2016 .

[38]  M. Li,et al.  Enhanced electrochemical performance and carbon deposition resistance of Ni–YSZ anode of solid oxide fuel cells by in situ formed Ni–MnO layer for CH4 on-cell reforming , 2014 .

[39]  Miroslaw L. Wyszynski,et al.  Biogas upgrade to syn-gas (H 2CO) via dry and oxidative reforming , 2011 .

[40]  De Chen,et al.  Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition , 2005 .

[41]  Ping Chen,et al.  Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a NiMgO catalyst , 1997 .

[42]  J. Laureyns,et al.  Raman microprobe studies on carbon materials , 1994 .