Decoding a class of maximum Hermitian rank metric codes

Maximum Hermitian rank metric codes were introduced by Schmidt in 2018 and in this paper we propose both interpolation-based encoding and decoding algorithms for this family of codes when the length and the minimum distance of the code are both odd.

[1]  Kai-Uwe Schmidt,et al.  Hermitian rank distance codes , 2017, Des. Codes Cryptogr..

[2]  Kai-Uwe Schmidt,et al.  Symmetric bilinear forms over finite fields with applications to coding theory , 2014, Journal of Algebraic Combinatorics.

[3]  Simon Plass,et al.  Fast decoding of rank-codes with rank errors and column erasures , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  Ferruh Özbudak,et al.  Hermitian Rank Metric Codes and Duality , 2021, IEEE Access.

[5]  G. Longobardi,et al.  Automorphism groups and new constructions of maximum additive rank metric codes with restrictions , 2019, Discret. Math..

[6]  Baofeng Wu,et al.  Linearized polynomials over finite fields revisited , 2012, Finite Fields Their Appl..

[8]  R. C. Bose,et al.  Hermitian Varieties in a Finite Projective Space PG(N, q 2) , 1966, Canadian Journal of Mathematics.

[9]  Yue Zhou,et al.  On equivalence of maximum additive symmetric rank-distance codes , 2020, Des. Codes Cryptogr..

[10]  Martin Bossert,et al.  Linearized Shift-Register Synthesis , 2011, IEEE Transactions on Information Theory.

[12]  Jean-Marie Goethals,et al.  Alternating Bilinear Forms over GF(q) , 1975, J. Comb. Theory A.