Statistics on Graphs, Exponential Formula and Combinatorial Physics

The concern of this paper is a famous combinatorial formula known under the name "exponential formula". It occurs quite naturally in many contexts (physics, mathematics, computer science). Roughly speaking, it expresses that the exponential generating function of a whole structure is equal to the exponential of those of connected substructures. Keeping this descriptive statement as a guideline, we develop a general framework to handle many different situations in which the exponential formula can be applied.

[1]  S. Lang Complex Analysis , 1977 .

[2]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[3]  Berndt Farwer,et al.  ω-automata , 2002 .

[4]  Christian Krattenthaler,et al.  DECOMPOSABLE FUNCTORS AND THE EXPONENTIAL PRINCIPLE, II , 2009, 0911.3760.

[5]  R. H. Bruck A Survey of Binary Systems , 1971 .

[6]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[7]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[8]  Ira M. Gessel,et al.  A q-analog of the exponential formula , 2006, Discret. Math..

[9]  Graeme Segal,et al.  Configuration-spaces and iterated loop-spaces , 1973 .

[10]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[11]  UK,et al.  ONE-PARAMETER GROUPS AND COMBINATORIAL PHYSICS , 2004 .

[12]  Alair Pereira do Lago,et al.  Free Burnside Semigroups , 2001, RAIRO Theor. Informatics Appl..

[13]  E. S. Li︠a︡pin,et al.  The theory of partial algebraic operations , 1997 .

[14]  Thomas Müller,et al.  Equations in finite semigroups: explicit enumeration and asymptotics of solution numbers , 2004, J. Comb. Theory, Ser. A.

[15]  L. Schoenfeld,et al.  The number of idempotent elements in symmetric semigroups , 1967 .

[16]  J. Touchard,et al.  Sur les cycles des substitutions , 1939 .

[17]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[18]  G. Uhlenbeck,et al.  On the Theory of the Virial Development of the Equation of State of Monoatomic Gases , 1953 .

[19]  C. Quesne,et al.  Disentangling q-Exponentials: A General Approach , 2003, math-ph/0310038.

[20]  Andreas W. M. Dress,et al.  Decomposable Functors and the Exponential Principle , 1997 .