PALM and STORM: What hides beyond the Rayleigh limit?

Super‐resolution imaging allows the imaging of fluorescently labeled probes at a resolution of just tens of nanometers, surpassing classic light microscopy by at least one order of magnitude. Recent advances such as the development of photo‐switchable fluorophores, high‐sensitivity microscopes and single particle localization algorithms make super‐resolution imaging rapidly accessible to the wider life sciences research community. As we take our first steps in deciphering the roles and behaviors of individual molecules inside their living cellular environment, a new world of research opportunities beckons. Here we discuss some of the latest developments achieved with these techniques and emerging areas where super‐resolution will give fundamental new “eye” sight to cell biology.

[1]  Xiaolin Nan,et al.  Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  S. Hell,et al.  Two- and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy: A study based on photon-optics , 1995 .

[3]  David Baddeley,et al.  Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. , 2009, Biophysical journal.

[4]  Christian Eggeling,et al.  Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy , 2008, Nature Biotechnology.

[5]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[6]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[7]  Thomas Basché,et al.  Single-molecule optical detection, imaging and spectroscopy , 1997 .

[8]  E. Betzig,et al.  Proposed method for molecular optical imaging. , 1995, Optics letters.

[9]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[10]  S. Hell,et al.  Fluorescence microscopy with super-resolved optical sections. , 2005, Trends in cell biology.

[11]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[12]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[13]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[14]  R. Heintzmann,et al.  Saturated patterned excitation microscopy--a concept for optical resolution improvement. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[16]  Judith Klumperman,et al.  Electron microscopy in cell biology: integrating structure and function. , 2003, Nature reviews. Molecular cell biology.

[17]  N. Bobroff Position measurement with a resolution and noise‐limited instrument , 1986 .

[18]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[19]  S. Hell,et al.  Monitoring the excited state of a fluorophore in a microscope by stimulated emission , 1995 .

[20]  S. Lukyanov,et al.  Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2 , 2007, Nature Protocols.

[21]  A. Sergé,et al.  Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes , 2008, Nature Methods.

[22]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[23]  Alberto Diaspro,et al.  Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region. , 2005, Biophysical journal.

[24]  Suliana Manley,et al.  Photoactivatable mCherry for high-resolution two-color fluorescence microscopy , 2009, Nature Methods.

[25]  C Cremer,et al.  Considerations on a laser-scanning-microscope with high resolution and depth of field. , 1978, Microscopica acta.

[26]  Y. Kalaidzidis Intracellular objects tracking. , 2007, European journal of cell biology.

[27]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[28]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[29]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[30]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[31]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[32]  Jürgen Köhler,et al.  Far-field fluorescence microscopy beyond the diffraction limit , 1999 .

[33]  David A. Agard,et al.  Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses , 1995, Electronic Imaging.

[34]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[35]  M. Hausmann,et al.  SPDM: light microscopy with single-molecule resolution at the nanoscale , 2008 .

[36]  Michael W. Davidson,et al.  Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes , 2007, Proceedings of the National Academy of Sciences.

[37]  Christian Eggeling,et al.  Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters , 2007, Biophysical journal.

[38]  Samuel T. Hess,et al.  Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories , 2007, Proceedings of the National Academy of Sciences.

[39]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[40]  Jean-Christophe Olivo-Marin,et al.  High-resolution statistical mapping reveals gene territories in live yeast , 2008, Nature Methods.

[41]  Jean-Christophe Olivo-Marin,et al.  SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope , 2006, Nature.

[42]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[43]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[44]  David Baddeley,et al.  High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy , 2008, Chromosome Research.

[45]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[47]  V. Verkhusha,et al.  Photoactivatable fluorescent proteins , 2005, Nature Reviews Molecular Cell Biology.

[48]  M. Gustafsson,et al.  S: Widefield Light Microscopy with 100-nm-scale Resolution in Three Dimensions , 2007 .

[49]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[50]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[51]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[52]  S W Hell,et al.  Photochromic rhodamines provide nanoscopy with optical sectioning. , 2007, Angewandte Chemie.

[53]  L. Mets,et al.  Nanometer-localized multiple single-molecule fluorescence microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S W Hell,et al.  4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. , 1998, Journal of structural biology.

[55]  T. Ha,et al.  Single-molecule high-resolution imaging with photobleaching. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[57]  Michael A Thompson,et al.  Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP , 2008, Nature Methods.

[58]  M. Orrit,et al.  Single-Molecule Optical Detection, Imaging and Spectroscopy: Basché/Single-Molecule , 2007 .

[59]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[60]  A. Egner,et al.  Two-color far-field fluorescence nanoscopy based on photoswitchable emitters , 2007 .

[61]  Clive R. Bagshaw,et al.  Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. , 2005, Biochemistry.

[62]  Cameron S. Osborne,et al.  Active genes dynamically colocalize to shared sites of ongoing transcription , 2004, Nature Genetics.

[63]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[64]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[65]  K. Rippe,et al.  Dual color localization microscopy of cellular nanostructures , 2009, Biotechnology journal.

[66]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[67]  Pekka Hänninen,et al.  Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research , 1995 .

[68]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[69]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[71]  Atsushi Miyawaki,et al.  mKikGR, a Monomeric Photoswitchable Fluorescent Protein , 2008, PloS one.

[72]  Michael Schaefer,et al.  Reversible photobleaching of enhanced green fluorescent proteins. , 2005, Biochemistry.

[73]  Bernhard Goetze,et al.  Structure brings clarity: Structured illumination microscopy in cell biology , 2009, Biotechnology journal.

[74]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[75]  Farren J. Isaacs,et al.  Phenotypic consequences of promoter-mediated transcriptional noise. , 2006, Molecular cell.

[76]  D H Burns,et al.  Strategies for attaining superresolution using spectroscopic data as constraints. , 1985, Applied optics.

[77]  S. Hell,et al.  Spherical nanosized focal spot unravels the interior of cells , 2008, Nature Methods.

[78]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[79]  Kristin L. Hazelwood,et al.  A bright and photostable photoconvertible fluorescent protein for fusion tags , 2009, Nature Methods.

[80]  Jürgen Köhler,et al.  3-Dimensional super-resolution by spectrally selective imaging , 1998 .

[81]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[82]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.