Thin terahertz-wave phase shifter by flexible film metamaterial with high transmission.

Thin terahertz (THz)-wave optical components are fundamentally important for integrated THz-wave spectroscopy and imaging systems, especially for phase manipulation devices. As described herein, a thin THz-wave phase shifter was developed using a flexible film metamaterial with high transmission and polarization independent properties. The metamaterial unit structure employs double-layer un-split ring resonators (USRRs) with a designed distance between the two layers to obtain phase retardance of π/2, thus constituting a THz-wave phase shifter. The metamaterial design keeps the transmission coefficient as high as 0.91. The phase shifter also has polarization independence due to the four-fold symmetry of the USRR structure. Because of the subwavelength feature size of the USRR, this shifter can offer benefits for manipulating the spatial profile for the THz-wave phase through design of a binary optics phase plate by arranging a USRR array. The thickness of 48 μm has benefits for developing integrated THz optics and other applications that demand compactness and flexibility. The developed film size of 5 cm × 5 cm from the device fabrication process is suitable for THz lenses or gratings of large optical components.

[1]  Christophe Fumeaux,et al.  Reflectarray antennas for terahertz communications , 2012 .

[2]  Wen-feng Sun,et al.  Ultrathin Terahertz Planar Elements , 2012, 1206.7011.

[3]  Shang Sun,et al.  Polarization-independent metamaterial with broad ultrahigh refractive index in terahertz region , 2015 .

[4]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[5]  Christophe Fumeaux,et al.  Experimental demonstration of reflectarray antennas at terahertz frequencies. , 2012, Optics express.

[6]  H. Fujita,et al.  Terahertz Devices with Reconfigurable Metamaterials by Surface Micromachining Technique (特集 メタマテリアル・プラズモニクス) , 2015 .

[7]  Yong-hee Lee,et al.  A terahertz metamaterial with unnaturally high refractive index , 2011, Nature.

[8]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[9]  Ryoichi Fukasawa,et al.  Terahertz imaging of silicon wafers , 2002 .

[10]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[11]  K. Kawase,et al.  Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. , 2003, Optics express.

[12]  Y. Kawada,et al.  Carrier envelope phase shifter for broadband terahertz pulses. , 2016, Optics letters.

[13]  Ying Zhang,et al.  Integrated Terahertz Graphene Modulator with 100% Modulation Depth , 2015 .

[14]  Thomas Koschny,et al.  Unifying approach to left-handed material design. , 2006, Optics letters.

[15]  Martin Koch,et al.  Asymmetric planar terahertz metamaterials. , 2010, Optics express.

[16]  Igal Brener,et al.  Metamaterials for THz polarimetric devices. , 2009, Optics express.

[17]  Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies , 2014, 1406.1127.

[18]  I. Ederra,et al.  Coupling Reduction Between Dipole Antenna Elements by Using a Planar Meta-Surface , 2009, IEEE Transactions on Antennas and Propagation.

[19]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[20]  Ranjan Singh,et al.  Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces , 2016 .

[21]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[22]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[23]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[24]  Fei Fan,et al.  Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice. , 2017, Optics express.

[25]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[26]  Weili Zhang,et al.  A Tunable Dispersion‐Free Terahertz Metadevice with Pancharatnam–Berry‐Phase‐Enabled Modulation and Polarization Control , 2015, Advanced materials.

[27]  C. Tahan,et al.  Superconducting-Semiconductor Quantum Devices: From Qubits to Particle Detectors , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[29]  Ranjan Singh,et al.  Near‐Field Inductive Coupling Induced Polarization Control in Metasurfaces , 2016 .

[30]  N. Han,et al.  Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. , 2011, Optics express.

[31]  Hiroyuki Fujita,et al.  MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. , 2014, Optics express.

[32]  Marco Rahm,et al.  Highly selective terahertz bandpass filters based on trapped mode excitation. , 2009, Optics express.

[33]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[34]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  K. Nelson,et al.  Resonant and nonresonant control over matter and light by intense terahertz transients , 2013, Nature Photonics.

[36]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[37]  Weili Zhang,et al.  Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry , 2015 .