The Brunn-Minkowski Inequality and A Minkowski Problem for Nonlinear Capacity

<p>In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C a p Subscript script upper A Baseline comma"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>Cap</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {Cap}_{\mathcal {A}},</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Laplace equation and whose solutions in an open set are called <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-harmonic.</p> <p>In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity: <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket upper C a p Subscript script upper A Baseline left-parenthesis lamda upper E 1 plus left-parenthesis 1 minus lamda right-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline greater-than-or-equal-to lamda left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 1 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline plus left-parenthesis 1 minus lamda right-parenthesis left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:msub> <mml:mi>Cap</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mspace width="thinmathspace" /> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:msub> <mml:mi>Cap</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:msub> <mml:mi>Cap</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> </mml:msub> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\left [\operatorname {Cap}_\mathcal {A} ( \lambda E_1 + (1-\lambda ) E_2 )\right ]^{\frac {1}{(n-p)}} \geq \lambda \, \left [\operatorname {Cap}_\mathcal {A} ( E_1 )\right ]^{\frac {1}{(n-p)}} + (1-\lambda ) \left [\operatorname {Cap}_\mathcal {A} (E_2 )\right ]^{\frac {1}{(n-p)}}</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 greater-than p greater-than n comma 0 greater-than lamda greater-than 1 comma"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>></mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">1>p>n, 0 > \lambda > 1,</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E 1 comma upper E 2"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">E_1, E_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are convex compact sets with positive <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-capacity. Moreover, if equality holds in the above inequality for some <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E 1"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">E_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E 2 comma"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">E_2,</mml:annotation> </mml:semantics> </mml:math> </inline-formula> then under certain regularity and structural assumptions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A comma"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathv

[1]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[2]  Andrea Colesanti,et al.  Brunn–Minkowski inequalities for variational functionals and related problems , 2005 .

[3]  Ronald R. Coifman,et al.  Weighted norm inequalities for maximal functions and singular integrals , 1974 .

[4]  M. Akman On the dimension of a certain measure in the plane , 2013, 1301.5860.

[5]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[6]  K. Nyström,et al.  The Hadamard variational formula and the Minkowski problem for p-capacity , 2015 .

[7]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[8]  John L. Lewis Capacitary functions in convex rings , 1977 .

[9]  G. Stampacchia,et al.  Regular points for elliptic equations with discontinuous coefficients , 1963 .

[10]  Björn E. J. Dahlberg,et al.  Estimates of harmonic measure , 1977 .

[11]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[12]  C. Kenig,et al.  The Dirichlet problem for elliptic equations with drift terms , 2001 .

[13]  E. Lieb,et al.  On the Case of Equality in the Brunn-Minkowski Inequality for Capacity , 1996 .

[14]  A. Colesanti,et al.  The Brunn-Minkowski inequality for p-capacity of convex bodies , 2003 .

[15]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[16]  H. Minkowski Volumen und Oberfläche , 1903 .

[17]  권경학,et al.  4 , 1906, Undiscovered Country.

[18]  Niklas L. P. Lundström,et al.  Boundary Harnack inequalities for Operators of p-Laplace type in Reifenberg Flat Domains , 2008 .

[19]  Arild Stubhaug Acta Mathematica , 1886, Nature.

[20]  Damon Afkari,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? 30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2011 .

[21]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[22]  C. Borell Hitting probabilities of killed Brownian motion; a study on geometric regularity , 1984 .

[23]  B. Bian,et al.  A Constant Rank Theorem for Quasiconcave Solutions of Fully Nonlinear Partial Differential Equations , 2011 .

[24]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[25]  T. Kilpeläinen,et al.  Growth of entire A-subharmonic functions , 2003 .

[26]  John L. Lewis,et al.  Boundary behaviour for p-harmonic functions in Lipschitz and starlike Lipschitz ring domains , 2007 .

[27]  Moises Venouziou,et al.  The Mixed Problem for Harmonic Functions in Polyhedra , 2008, 0803.0957.

[28]  C. Heil Harmonic Analysis and Applications , 2006 .

[29]  C. Borell Capacitary inequalities of the Brunn-Minkowski type , 1983 .

[30]  D. Jerison A minkowski problem for electrostatic capacity , 1996 .

[31]  John L. Lewis,et al.  REGULARITY AND FREE BOUNDARY REGULARITY FOR THE p LAPLACIAN IN LIPSCHITZ AND C1 DOMAINS , 2008 .

[32]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[33]  Nichlas J. Dorevaar Conexity Of Level Sets For Solutions To elliptic Ring Problems , 1990 .

[34]  Johnny M. Lewis,et al.  $\sigma$-finiteness of elliptic measures for quasilinear elliptic PDE in space , 2015, 1509.07068.

[35]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[36]  B. Cornils Fenn , 2020, Catalysis from A to Z.

[37]  Quasiconcave Solutions to Elliptic Problems in Convex Rings , 2009 .

[38]  James Serrin,et al.  Local behavior of solutions of quasi-linear equations , 1964 .

[39]  John L. Lewis,et al.  Regularity and Free Boundary Regularity for the p-Laplace Operator in Reifenberg Flat and Ahlfors Regular Domains , 2012 .

[40]  F. Lin,et al.  Unique continuation for elliptic operators: A geometric‐variational approach , 1987 .

[41]  M. Longinetti Some isoperimetric inequalities for the level curves of capacity and Green's functions on convex plane domains , 1988 .

[42]  B. M. Fulk MATH , 1992 .

[43]  John L. Lewis,et al.  Boundary behavior and the Martin boundary problem for p harmonic functions in Lipschitz domains , 2010 .

[44]  John L. Lewis,et al.  Quasi-linear PDEs and low-dimensional sets , 2018 .

[45]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1991, Nature.

[46]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[47]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[48]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[49]  A. Colesanti,et al.  The Brunn–Minkowski Inequality for the n-dimensional Logarithmic Capacity of Convex Bodies , 2005 .

[50]  Paolo Salani,et al.  Overdetermined anisotropic elliptic problems , 2009 .