Increasing carbon utilization in Fischer–Tropsch synthesis using H2-deficient or CO2-rich syngas feeds

Abstract Fischer–Tropsch technology has become a topical issue in the energy industry in recent times. The synthesis of linear hydrocarbon that has high cetane number diesel fuel through the Fischer–Tropsch reaction requires syngas with high H 2 /CO ratio. Nevertheless, the production of syngas from biomass and coal, which have low H 2 /CO ratios or are CO 2 rich may be desirable for environmental and socio-political reasons. Efficient carbon utilization in such H 2 -deficient and CO 2 -rich syngas feeds has not been given the required attention. It is desirable to improve carbon utilization using such syngas feeds in the Fischer–Tropsch synthesis not only for process economy but also for sustainable development. Previous catalyst and process development efforts were directed toward maximising C 5+ selectivity; they are not for achieving high carbon utilization with H 2 -deficient and CO 2 -rich syngas feeds. However, current trends in FTS catalyst design hold the potential of achieving high carbon utilization with wide option of selectivities. Highlights of the current trends in FTS catalyst design are presented and their prospect for achieving high carbon utilization in FTS using H 2 -deficient and CO 2 -rich syngas feeds is discussed.

[1]  Tao Wang,et al.  Influence of lanthanum on the performance of Zr-Co/activated carbon catalysts in Fischer-Tropsch synthesis , 2008 .

[2]  J. Goodwin,et al.  Characterization of La3+-Promoted Co/SiO2Catalysts , 1996 .

[3]  E. Iglesia,et al.  Non-oxidative reactions of propane on Zn/Na-ZSM5 , 1999 .

[4]  Jong Wook Bae,et al.  Enhanced Production of C2–C4 Olefins Directly from Synthesis Gas , 2008 .

[5]  R. Snel Factors affecting the extent of branching in fischertropsch synthesis products with iron-based catalysts , 1989 .

[6]  D. Bukur,et al.  Highly active and stable iron Fischer-Tropsch catalyst for synthesis gas conversion to liquid fuels , 1999 .

[7]  A. Kiennemann,et al.  Promotion of Co/SiO2 Fischer–Tropsch catalysts with zirconium , 2003 .

[8]  M. Baerns,et al.  Manganese-oxide-supported iron Fischer-Tropsch synthesis catalysts: Physical and catalytic characterization , 1987 .

[9]  Andre Peter Steynberg,et al.  Introduction to Fischer-Tropsch Technology , 2004 .

[10]  B. Zhong,et al.  Structure and Fischer–Tropsch performance of iron–manganese catalyst incorporated with SiO2 , 2005 .

[11]  D. Glasser,et al.  Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes , 2005 .

[12]  W. Keim Catalysis in C1 Chemistry , 1983 .

[13]  Enrique Iglesia,et al.  Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties , 2002 .

[14]  S. Bessell Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts , 1995 .

[15]  Yong Yang,et al.  Study of an iron-manganese Fischer–Tropsch synthesis catalyst promoted with copper , 2006 .

[16]  T. Shingles,et al.  Experience with a new type of reactor for Fischer-Tropsch synthesis , 1990 .

[17]  Hans Schulz,et al.  Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts , 1999 .

[18]  Agustín Martínez,et al.  The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts , 2005 .

[19]  Hong Wang,et al.  Effect of magnesium promoter on iron-based catalyst for Fischer–Tropsch synthesis , 2006 .

[20]  Burtron H. Davis,et al.  Fischer-Tropsch synthesis, catalysts and catalysis , 2007 .

[21]  H. Xiang,et al.  Study of an iron-based Fischer–Tropsch synthesis catalyst incorporated with SiO2 , 2006 .

[22]  D. Newsome The Water-Gas Shift Reaction , 1980 .

[23]  Morteza Sohrabi,et al.  Fischer‐Tropsch Synthesis: Modeling and Performance Study for Fe‐HZSM5 Bifunctional Catalyst , 2005 .

[24]  Jinlin Li,et al.  Catalytic performance of zirconium-modified Co/Al2O3 for Fischer–Tropsch synthesis , 2005 .

[25]  B. Davis,et al.  Role of CO2 in the initiation of chain growth and alcohol formation during the Fischer-Tropsch synthesis , 1997 .

[26]  P. Concepción,et al.  Oxidative dehydrogenation of ethane on Te-containing MoVNbO catalysts , 2004 .

[27]  A. Dalai,et al.  Morphology and deactivation behaviour of Co–Ru/γ‐Al2O3 Fischer–Tropsch synthesis catalyst , 2008 .

[28]  E. Iglesia,et al.  Reaction Pathways and Rate-Determining Steps in Reactions of Alkanes on H-ZSM5 and Zn/H-ZSM5 Catalysts☆ , 1999 .

[29]  M. Röper,et al.  Fischer-Tropsch Synthesis , 1983 .

[30]  Hung-Ming Yang,et al.  Kinetics for synthesizing benzyl salicylate by third-liquid phase-transfer catalysis , 2006 .

[31]  E. Iglesia,et al.  Synthesis, Structural Characterization, and Catalytic Properties of Tungsten-Exchanged H-ZSM5† , 2001 .

[32]  J. H. Gregor,et al.  Fischer-Tropsch products as liquid fuels or chemicals , 1990 .

[33]  Jingjiang He,et al.  Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. , 2006, Chemistry.

[34]  B. Davis,et al.  Fischer–Tropsch synthesis: activation of low-alpha potassium promoted iron catalysts , 2003 .

[35]  R. Snel Catalytic hydrogenation of carbon monoxide to alkenes over partially degraded iron complexes: I. Unsupported Iron Catalysts , 1988 .

[36]  K. Fujimoto,et al.  Fischer-Tropsch Synthesis with Supported Cobalt Catalyst. Promoting Effects of Lanthanum Oxide for Cobalt/Silica Catalyst , 1996 .

[37]  E. Iglesia,et al.  Catalytic dehydrogenation of alkanes on Pt/Na-(Fe)ZSM5 and staged O2 introduction for selective H2 removal , 2004 .

[38]  A. Adesina,et al.  Improved alkene selectivity in carbon monoxide hydrogenation over silica supported cobalt-molybdenum catalyst , 1994 .

[39]  J. Zwart,et al.  Fischer-tropsch synthesis using zeolite-supported iron catalysts derived from iron carbonyl complexes , 1987 .

[40]  Yong Yang,et al.  Effect of manganese on an iron-based Fischer–Tropsch synthesis catalyst prepared from ferrous sulfate , 2007 .

[41]  A. Corma,et al.  In situ transformation of Fisher-Tropsch products into high-octane gasoline-range hydrocarbons by using hybrid zeolite-based catalysts , 2005 .

[42]  L. Madeira,et al.  Mechanistic effects resulting from the cesium-doping of a NiMoO4 catalyst in n-butane oxidative dehydrogenation , 2005 .

[43]  G. Jacobs,et al.  FISCHER-TROPSCH SYNTHESIS: CHARACTERIZATION AND CATALYTIC PROPERTIES OF RHENIUM PROMOTED COBALT ALUMINA CATALYSTS , 2003 .

[44]  D. K. Chakrabarty,et al.  Synthesis of light alkenes from syngas on silicalite-1 supported cobalt and cobalt-manganese catalysts , 1995 .

[45]  E. Steen,et al.  Evaluation of molybdenum-modified alumina support materials for Co-based Fischer-Tropsch catalysts , 2008 .

[46]  Catalytic CO hydrogenation on potassic Fe/zeolite LTL , 2002 .

[47]  W. Chu,et al.  Effect of promotion with ruthenium on the structure and catalytic performance of mesoporous silica (smaller and larger pore) supported cobalt Fischer–Tropsch catalysts , 2009 .

[48]  M. Dry,et al.  Chemical concepts used for engineering purposes , 2004 .

[49]  L. R. Taylor,et al.  VOLTAMMETRY MADE EASY , 1994 .

[50]  S. Bessell Support effects in cobalt-based fischer-tropsch catalysis , 1993 .

[51]  R. O'brien,et al.  Effect of Potassium Promotion on Iron-Based Catalysts for Fischer–Tropsch Synthesis , 1998 .

[52]  Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H-ZSM5 , 2002 .

[53]  Y. Yoneyama,et al.  Direct synthesis of isoparaffin by modified Fischer–Tropsch synthesis using hybrid catalyst of iron catalyst and zeolite , 2005 .

[54]  G. Hutchings,et al.  Effect of the addition of Au on Co/TiO2 catalyst for the Fischer–Tropsch reaction , 2007 .

[55]  H. Pines The chemistry of catalytic hydrocarbon conversions , 1981 .

[56]  Yongqing Zhang,et al.  Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts , 2002 .

[57]  M. Vannice,et al.  The catalytic synthesis of hydrocarbons from H2CO mixtures over the Group VIII metals: V. The catalytic behavior of silica-supported metals , 1977 .

[58]  Chunshan Song Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing , 2006 .

[59]  Sanjay M. Mahajani,et al.  Fischer-Tropsch synthesis using bio-syngas and CO2 , 2007 .

[60]  G. Calleja,et al.  Cobalt/HZSM-5 zeolite catalyst for the conversion of syngas to hydrocarbons , 1991 .

[61]  Yongqing Zhang,et al.  Fischer–Tropsch synthesis: effect of small amounts of boron, ruthenium and rhenium on Co/TiO2 catalysts , 2002 .

[62]  James G. Goodwin,et al.  Effect of La3+Promotion of Co/SiO2on CO Hydrogenation , 1996 .

[63]  B. Davis,et al.  Role of CO2 oxygenates and alkenes in the initiation of chain growth during the Fischer-Tropsch synthesis , 1997 .

[64]  G. Jacobs,et al.  Fischer–Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS , 2004 .

[65]  F. Bedu-Addo,et al.  La Promotion of Co Fischer-Tropsch Catalysts , 1994 .

[66]  R. Idem,et al.  Production of C4 hydrocarbons from modified Fischer-Tropsch synthesis over Co-Ni-ZrO2/ Sulfated-ZrO2 hybrid catalysts , 2000 .

[67]  Yong Yang,et al.  Effect of calcium promoter on a precipitated iron–manganese catalyst for Fischer–Tropsch synthesis , 2006 .

[68]  R. Snel The nature of hydrocarbon synthesis by means of hydrogenation of carbon monoxide on iron-based catalysts: Part I. hydrogenation-strength distribution of surface sites , 1989 .

[69]  B. Davis,et al.  Fischer-Tropsch synthesis: Group II alkali-earth metal promoted catalysts , 2003 .

[70]  F. G. Botes,et al.  The addition of HZSM-5 to the Fischer–Tropsch process for improved gasoline production , 2004 .

[71]  Jinlin Li,et al.  Ruthenium promotion of Co/SBA-15 catalysts with high cobalt loading for Fischer–Tropsch synthesis , 2009 .

[72]  H. Pennline,et al.  Slurry phase Fischer-Tropsch synthesis with iron-manganese catalysts , 1986 .

[73]  F. Cavani,et al.  Oxidative dehydrogenation of ethane and propane : How far from commercial implementation? , 2007 .