Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis

[1]  A. Morris,et al.  Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18 q 11 . 2 , 2019 .

[2]  T. Mushiroda,et al.  Strain‐based HLA association analysis identified HLA‐DRB1*09:01 associated with modern strain tuberculosis , 2017, HLA.

[3]  K. Tokunaga,et al.  Mutations in rrs, rpsL and gidB in streptomycin-resistant Mycobacterium tuberculosis isolates from Thailand. , 2016, Journal of global antimicrobial resistance.

[4]  Bjarni V. Halldórsson,et al.  HLA class II sequence variants influence tuberculosis risk in populations of European ancestry , 2016, Nature Genetics.

[5]  N. Brockdorff,et al.  Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome , 2015, Molecular and Cellular Biology.

[6]  J. Barrett,et al.  Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration , 2015, Nature Genetics.

[7]  S. Gagneux,et al.  Consequences of genomic diversity in Mycobacterium tuberculosis. , 2014, Seminars in immunology.

[8]  S. Kuo,et al.  The Pattern of Cytokine Production In Vitro Induced by Ancient and Modern Beijing Mycobacterium tuberculosis Strains , 2014, PloS one.

[9]  M. Carrington,et al.  Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease , 2014 .

[10]  J. Lingner,et al.  A quantitative telomeric chromatin isolation protocol identifies different telomeric states , 2013, Nature Communications.

[11]  H. Kimura,et al.  Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway , 2013, Nature Structural &Molecular Biology.

[12]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[13]  Choon-Sik Park,et al.  CD53, a suppressor of inflammatory cytokine production, is associated with population asthma risk via the functional promoter polymorphism -1560 C>T. , 2013, Biochimica et biophysica acta.

[14]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[15]  R. Wilkinson,et al.  Modern Lineages of Mycobacterium tuberculosis Exhibit Lineage-Specific Patterns of Growth and Cytokine Induction in Human Monocyte-Derived Macrophages , 2012, PloS one.

[16]  Bachti Alisjahbana,et al.  Polymorphisms in Autophagy Genes and Susceptibility to Tuberculosis , 2012, PloS one.

[17]  Yusuke Nakamura,et al.  Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis , 2012, Journal of Human Genetics.

[18]  M. Newport,et al.  Common variants at 11p13 are associated with susceptibility to tuberculosis , 2012, Nature Genetics.

[19]  John C. Marioni,et al.  Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection , 2012, Proceedings of the National Academy of Sciences.

[20]  Bachti Alisjahbana,et al.  A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians , 2012, BMC Medical Genetics.

[21]  I. Comas,et al.  Human Macrophage Responses to Clinical Isolates from the Mycobacterium tuberculosis Complex Discriminate between Ancient and Modern Lineages , 2011, PLoS pathogens.

[22]  G. Kaplan,et al.  Innate Immune Response to Mycobacterium tuberculosis Beijing and Other Genotypes , 2010, PloS one.

[23]  A. Morris,et al.  Data quality control in genetic case-control association studies , 2010, Nature Protocols.

[24]  A. Morris,et al.  Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2 , 2010, Nature Genetics.

[25]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[26]  Virginia Pascual,et al.  An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis , 2010, Nature.

[27]  Inês Barroso,et al.  Genome-wide association study identifies five loci associated with lung function , 2010, Nature Genetics.

[28]  J. Houwing-Duistermaat,et al.  A genome-wide linkage scan reveals CD53 as an important regulator of innate TNF-α levels , 2010, European Journal of Human Genetics.

[29]  H. Yanai,et al.  Variable-number tandem repeats typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 in Thailand. , 2010, Tuberculosis.

[30]  M. Netea,et al.  Genomewide association study of leprosy. , 2010, The New England journal of medicine.

[31]  C. Khor,et al.  Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease , 2010, Nature Genetics.

[32]  A. Hofman,et al.  Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function , 2010, Nature Genetics.

[33]  M. Netea,et al.  Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. , 2009, The Journal of infectious diseases.

[34]  J. Rougemont,et al.  Comparative genomic and phylogeographic analysis of Mycobacterium leprae , 2009, Nature Genetics.

[35]  S. Niemann,et al.  Autophagy Gene Variant IRGM −261T Contributes to Protection from Tuberculosis Caused by Mycobacterium tuberculosis but Not by M. africanum Strains , 2009, PLoS pathogens.

[36]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[37]  Peter Donnelly,et al.  Genome-wide and fine-resolution association analysis of malaria in West Africa , 2009, Nature Genetics.

[38]  J. Farrar,et al.  The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis , 2008, PLoS pathogens.

[39]  Stefan Niemann,et al.  Variable host-pathogen compatibility in Mycobacterium tuberculosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[41]  In Gyu Kim,et al.  LPS-induced CD53 expression: a protection mechanism against oxidative and radiation stress. , 2004, Molecules and cells.

[42]  D. Townsend,et al.  The importance of glutathione in human disease. , 2003, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[43]  Dean P. Jones,et al.  Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. , 2002, Free radical biology & medicine.

[44]  J. Pieters,et al.  Association of distinct tetraspanins with MHC class II molecules at different subcellular locations in human immature dendritic cells. , 2001, International immunology.

[45]  H. Geuze,et al.  Selective Enrichment of Tetraspan Proteins on the Internal Vesicles of Multivesicular Endosomes and on Exosomes Secreted by Human B-lymphocytes* , 1998, The Journal of Biological Chemistry.

[46]  P. Lazo,et al.  Physiological activation of human neutrophils down‐regulates CD53 cell surface antigen , 1998, Journal of leukocyte biology.

[47]  P. Palittapongarnpim,et al.  Restriction fragment length polymorphism study of Mycobacterium tuberculosis in Thailand using IS6110 as probe. , 1997, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[48]  I. Barasoain,et al.  Recurrent infectious diseases in human CD53 deficiency , 1997, Clinical and diagnostic laboratory immunology.

[49]  J. Szöllősi,et al.  Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. , 1996, Journal of immunology.

[50]  Comstock Gw Tuberculosis in twins: a re-analysis of the Prophit survey. , 1978, The American review of respiratory disease.

[51]  G. Comstock Tuberculosis in twins: a re-analysis of the Prophit survey. , 1978, The American review of respiratory disease.

[52]  C. Dolea,et al.  World Health Organization , 1949, International Organization.