Adaptive Wavelet Methods on Unbounded Domains
暂无分享,去创建一个
[1] Claudio Canuto,et al. The wavelet element method. Part I: Construction and analysis. , 1997 .
[2] Ronald A. DeVore,et al. Multiscale, Nonlinear and Adaptive Approximation , 2009 .
[3] Winfried Sickel,et al. Best m-term approximation and Lizorkin-Triebel spaces , 2011, J. Approx. Theory.
[4] Michael Christian Lehn,et al. FLENS - a flexible library for efficient numerical solutions , 2008 .
[5] Erwan Faou,et al. Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..
[6] Tammo Jan Dijkema,et al. Adaptive tensor product wavelet methods for solving PDEs , 2009 .
[7] George C. Donovan,et al. Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .
[8] Steffen Dereich,et al. Multilevel Monte Carlo algorithms for L\'{e}vy-driven SDEs with Gaussian correction , 2011, 1101.1369.
[9] R. Schneider,et al. Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .
[10] Wolfgang Dahmen,et al. Fast computation tools for adaptive wavelet schemes , 2005 .
[11] Rob Stevenson,et al. An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .
[12] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..
[13] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..
[14] Christian Bender,et al. Dual pricing of multi-exercise options under volume constraints , 2011, Finance Stochastics.
[15] G. Teschke,et al. A compressive Landweber iteration for solving ill-posed inverse problems , 2008 .
[16] Pál-Andrej Nitsche,et al. Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .
[17] Erich Novak,et al. Optimal approximation of elliptic problems by linear and nonlinear mappings IV: Errors in L2 and other norms , 2004, J. Complex..
[18] Michael Griebel,et al. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..
[19] Stephan Dahlke,et al. Adaptive wavelet methods and sparsity reconstruction for inverse heat conduction problems , 2010, Adv. Comput. Math..
[20] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[21] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[22] Rob P. Stevenson,et al. Computation of differential operators in wavelet coordinates , 2005, Math. Comput..
[23] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[24] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[25] Winfried Sickel,et al. Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .
[26] Daniel Rudolf,et al. Error bounds for computing the expectation by Markov chain Monte Carlo , 2009, Monte Carlo Methods Appl..
[27] T. Goodman. A Class of Orthogonal Refinable Functions and Wavelets , 2003 .
[28] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..
[29] G. Teschke,et al. Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints , 2010 .
[30] Wolfgang Dahmen,et al. Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..
[31] Karsten Urban,et al. Wavelet Methods for Elliptic Partial Differential Equations , 2008 .
[32] Rob Stevenson,et al. On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..
[33] Winfried Sickel,et al. Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross , 2009, J. Approx. Theory.
[34] Pál-Andrej Nitsche,et al. Sparse Approximation of Singularity Functions , 2003 .
[35] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[36] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[37] D. Hardin,et al. Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .
[38] Albert Cohen,et al. Wavelet methods in numerical analysis , 2000 .
[39] Rob Stevenson,et al. Adaptive wavelet algorithms for elliptic PDE's on product domains , 2008, Math. Comput..
[40] Rob Stevenson,et al. Adaptive wavelet methods for solving operator equations: An overview , 2009 .
[41] K. Bredies,et al. Regularization with non-convex separable constraints , 2009 .
[42] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[43] Anita Tabacco,et al. Ondine Biortogonali: teoria e applicazioni , 1999 .
[44] Wolfgang Dahmen,et al. Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..
[45] G. Plonka. The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform for Sparse Representation of Two-Dimensional Data , 2009 .
[46] Claudio Canuto,et al. An anisotropic functional setting for convection-diffusion problems , 2001, J. Num. Math..
[47] Peter Oswald,et al. Criteria for Hierarchical Bases in Sobolev Spaces , 2000 .
[48] Wolfgang Dahmen,et al. Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..
[49] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[50] Albert Cohen,et al. Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.
[51] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[52] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[53] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[54] Stefano Berrone,et al. An Adaptive WEM Algorithm for Solving Elliptic Boundary Value Problems in Fairly General Domains , 2006, SIAM J. Sci. Comput..