Generalized Maass wave forms

Borel A., 1997, CAMBRIDGE TRACTS MAT, V130; Bruggeman R.W., 1981, LECT NOTES MATH, V865; BRUGGEMAN RW, 1978, INVENT MATH, V45, P1, DOI 10.1007-BF01406220; Bruggeman R.W., 1994, MONOGRAPHS MATH, V88; Bruinier JH, 2009, MATH ANN, V345, P31, DOI 10.1007-s00208-009-0338-4; Bruinier JH, 2008, MATH ANN, V342, P673, DOI 10.1007-s00208-008-0252-1; Bump Daniel, 1997, CAMBRIDGE STUDIES AD, V55, DOI DOI 10.1017-CBO9780511609572; Dong CY, 2000, COMMUN MATH PHYS, V214, P1, DOI 10.1007-s002200000242; Eichler M., 1957, MATH Z, V67, P267, DOI 10.1007-BF01258863; Eichler M., 1965, ACTA ARITH, V11, P169; Iwaniec H., 2002, GRADUATE STUDIES MAT, V53; Knopp M, 2004, ILLINOIS J MATH, V48, P1345; Knopp M, 2010, INT J NUMBER THEORY, V6, P1083, DOI 10.1142-S179304211000340X; Knopp M, 2003, ACTA ARITH, V110, P117, DOI 10.4064-aa110-2-2; Knopp M, 2003, J NUMBER THEORY, V99, P1, DOI 10.1016-S0022-314X(02)00065-3; Knopp M, 2009, INT J NUMBER THEORY, V5, P1049, DOI 10.1142-S1793042109002547; KNOPP MI, 1974, B AM MATH SOC, V80, P607, DOI 10.1090-S0002-9904-1974-13520-2; Lewis J, 2001, ANN MATH, V153, P191, DOI 10.2307-2661374; Maass H., 1983, LECT MODULAR FUNCTIO; Magnus Wilhelm, 1966, GRUND MATH WISS, V52; Mayer H., 1991, B AM MATH SOC, V25, P55; Muhlenbruch T, 2006, J NUMBER THEORY, V118, P208, DOI 10.1016-j.jnt.2005.09.003; Muhlenbruch T., 2003, THESIS UTRECHT U; Raji W, 2009, FUNCT APPROX COMM MA, V41, P105; Raji W, 2009, INT J NUMBER THEORY, V5, P153; Zhu YC, 1996, J AM MATH SOC, V9, P237, DOI 10.1090-S0894-0347-96-00182-8

[1]  J. Lehner,et al.  EICHLER COHOMOLOGY FOR GENERALIZED MODULAR FORMS , 2009 .

[2]  M. Eichler,et al.  Eine Verallgemeinerung der Abelschen Integrale , 1957 .

[3]  R. Bruggeman Fourier Coefficients of Automorphic Forms , 1981 .

[4]  T. Mühlenbruch Hecke operators on period functions for Γ0(n) , 2006 .

[5]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[6]  A. Borel Automorphic Forms on Sl2 (R) , 1997 .

[7]  Robert C. Rhoades,et al.  Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues , 2008, 0802.0963.

[8]  D. Mayer,et al.  The thermodynamic formalism approach to Selberg's zeta function for ${\text{PSL}}\left( {2,\mathbf{Z}} \right)$ , 1991 .

[9]  M. Eichler Grenzkreisgruppen und kettenbruchartige Algorithmen , 1965 .

[10]  G. Mason,et al.  Generalized modular forms , 2003 .

[11]  H. Iwaniec Spectral methods of automorphic forms , 2002 .

[12]  M. Knopp Some new results on the Eichler cohomology of automorphic forms , 1974 .

[13]  R. Bruggeman Fourier coefficients of cusp forms , 1978 .

[14]  C. Dong,et al.  Modular-Invariance of Trace Functions¶in Orbifold Theory and Generalized Moonshine , 1997, q-alg/9703016.

[15]  Families of Automorphic Forms , 1994 .

[16]  Yongchang Zhu,et al.  Modular invariance of characters of vertex operator algebras , 1995 .

[17]  Wissam Raji,et al.  Eichler cohomology for generalized modular forms ii , 2010 .

[18]  D. Bump Automorphic Forms and Representations , 1998 .

[19]  Hans Maass,et al.  Lectures on modular functions of one complex variable , 1983 .

[20]  Period functions for Maass wave forms. I. , 2001, math/0101270.

[21]  V. Snaith AUTOMORPHIC FORMS ON SL2(ℝ) (Cambridge Tracts in Mathematics 130) , 1999 .

[22]  D. Mayer,et al.  THE THERMODYNAMIC FORMALISM APPROACH TO SELBERG'S ZETA FUNCTION FOR PSL(2, Z) , 1991 .

[23]  G. Mason,et al.  Vector-valued modular forms and Poincaré series , 2004 .

[24]  G. Mason,et al.  On vector-valued modular forms and their Fourier coefficients , 2003 .