Optimal pumping from Palmela water supply wells (Portugal) using simulated annealing

Aquifer systems are an important part of an integrated water resources management plan as foreseen in the European Union’s Water Framework Directive (2000). The sustainable development of these systems demands the use of all available techniques capable of handling the multidisciplinary features of the problems involved. The formulation and resolution of an optimization model is described for a planning and management problem based on the Palmela aquifer (Portugal), developed to supply a given number of demand centres. This problem is solved using one of the latest optimization techniques, the simulated annealing heuristic method, designed to find the optimal solutions while avoiding falling into local optimums. The solution obtained, providing the wells location and the corresponding pumped flows to supply each centre, are analysed taking into account the objective function components and the constraints. It was found that the operation cost is the biggest share of the final cost, and the choice of wells is greatly affected by this fact. Another conclusion is that the solution takes advantage of the economies of scale, that is, it points toward drilling a large capacity well even if this increases the investment cost, rather than drilling several wells, which together will increase the operation costs.RésuméLes eaux souterraines constituent un important réservoir d’eau douce dont la gestion a été incluse dans un système intégré par la directive-cadre sur l’eau (2000/60/CE). Le développement durable de ce système implique la mise en œuvre des techniques disponibles susceptibles de maîtriser les composantes multidisciplinaires des problèmes posés. Un modèle de gestion optimisée a été bâti et appliqué à l’aquifère de Palmela (Portugal). La résolution du modèle est basé sur une des techniques d’optimisation heuristiquique les plus récentes, la méthode du recuit simulé. Le modèle localise les puits et optimise le débit pompé pour alimenter chaque centre, prenant en compte les composantes du modèle: les contraintes et la fonction objectif. On a montré que le coût opérationnel représente la plus grande partie du coût final et le choix des puits est grandement conditionné par ce fait. Une autre conclusion est que l’optimisation tire avantage de l’économie d’échelle, incitant à la foration d’un puits de grande capacité de production, même si cette solution accroît l’investissement, plutôt que de forer plusieurs puits qui augmenteront au total les coûts opérationnels.ResumenLos sistemas acuíferos son una parte importante en un plan de gestión integrado de los recursos hídricos, tal como está previsto en las European Union’s Water Framework Directive (2000). El desarrollo sustentable de estos sistemas demanda el uso de todas las técnicas disponibles capaces de manejar los aspectos multidisciplinarias en los problemas involucrados. La formulación y resolución de un modelo de optimización es descripto para problemas de gestión y planificación, basado en el acuífero Palmela (Portugal) y desarrollado para abastecer a un número dado de centros de demanda. Este problema es resuelto usando una de las últimas técnicas de optimización, el método heurístico de temple simulado, diseñado para encontrar las soluciones óptimas evitando al mismo tiempo caer en óptimizaciones locales. Las soluciones obtenidas, conocidas la ubicación de los pozos y los correspondientes flujos de bombeo para abastecer a cada centro, son analizadas teniendo en cuenta los componentes de la función objetivo y las restricciones. Se encontró que el costo de operación es el mayor componente del costo final, y la elección de los pozos está en gran medida afectada por este hecho. Otra conclusión es que la solución aprovecha las ventajas de las economías de escala, esto es, apunta a perforar pozos de una gran capacidad aun si esto incrementa del costos de inversión, más bien que perforar varios pozos, los cuales en conjuntos incrementarían los costos de operación.摘要正如2000年欧盟水框架导则所预料的, 含水层系统是集成水资源管理规划中一个重要部分。这些系统的可持续开发, 需要利用所有能处理该问题所具有的多学科性质的有效技术。本文对为葡萄牙Palmela含水层的规划和管理问题 (提供给定数量的需求中心) 构建并求解的优化模型进行了描述。利用最新优化技术和模拟退火启发式算法求解该问题。该算法可在找到最优解的同时避免陷入局部最优。该解在引入目标函数和约束条件下解出, 给出了井的位置和供给每个中心的相应的抽水流量。结果发现, 操作成本占最终成本的份额最大, 大大影响了井的选择。另外, 这个方案利用规模经济, 也就是说, 它倾向钻一口大流量的井而不是钻几口井。即使这增加了单井投资, 但是会降低运行成本。ResumoOs sistemas aquíferos constituem importantes reservatórios hídricos que devem ser considerados no âmbito da gestão integrada dos recursos hídricosprevista na Directiva Quadro da União Europeia (2000). A sua gestão sustentável obriga a que se sejam mobilizadas todas as técnicas capazes de tratarsimultaneamente as múltiplas facetas dos problemas que se colocam. Neste artigo é apresentado um modelo de optimização para definir a forma de abastecerum conjunto de centros populacionais a partir da exploração de um aquífero, sendo a respectiva resolução realizada para o caso do aquífero de Palmela(Portugal). O problema é resolvido utilizando uma das mais recentes técnicas de optimização, o Recozimento Simulado. Este método insere-se no grupo dasheurísticas modernas, contempla uma componente probabilística e adopta uma estratégia, na busca da solução óptima, não estritamente descendente,permitindo movimentos ascendentes, evitando cair em óptimos locais. Com os resultados obtidos ficam estabelecidos os locais de captação e os caudaisextraídos para satisfazer cada um dos centros populacionais. A análise destes resultados permite concluir que os custos de operação são preponderantes,sendo claro que é mais favorável construir uma captação de grande capacidade, a que estão associados grandes custos de investimentos, do que váriascaptações de pequenas dimensões de que resultariam maiores custos de operação.

[1]  Maria C. Cunha,et al.  Comparison of Variance‐Reduction and Space‐Filling Approaches for the Design of Environmental Monitoring Networks , 2007, Comput. Aided Civ. Infrastructure Eng..

[2]  M. C. Cunha,et al.  Groundwater Clean-up: The OptimizationPerspective , 2000 .

[3]  M. Cunha Groundwater cleanup: The optimization perspective (a literature review) , 2002 .

[4]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[5]  Steven M. Gorelick,et al.  Groundwater Contamination Optimal Capture and Containment , 1993 .

[6]  Liang-Cheng Chang,et al.  Dynamic Optimal Groundwater Management with Inclusion of Fixed Costs , 2002 .

[7]  David P. Ahlfeld,et al.  Designing contaminated groundwater remediation systems using numerical simulation and nonlinear optimization , 1986 .

[8]  Yuh-Ming Lee,et al.  Comparison of Algorithms for Nonlinear Integer Optimization: Application to Monitoring Network Design , 1996 .

[9]  C. Zheng,et al.  GROUND WATER MANAGEMENT OPTIMIZATION USING GENETIC ALGORITHMS AND SIMULATED ANNEALING: FORMULATION AND COMPARISON 1 , 1998 .

[10]  António Pais Antunes,et al.  Optimization Model for Integrated Regional Wastewater Systems Planning , 2009 .

[11]  Maria da Conceição Cunha,et al.  Water Distribution Network Design Optimization: Simulated Annealing Approach , 1999 .

[12]  Maria da Conceição Cunha,et al.  Hydraulic infrastructures design using simulated annealing , 2001 .

[13]  António Pais Antunes,et al.  An optimization approach to wastewater systems planning at regional level , 2002 .

[14]  S. Gorelick A review of distributed parameter groundwater management modeling methods , 1983 .

[15]  B. Wagner Recent advances in simulation-optimization groundwater management modeling (95RG00394) , 1995 .

[16]  David E. Dougherty,et al.  Optimal groundwater management: 2. Application of simulated annealing to a field-scale contamination site , 1993 .

[17]  C. Zheng,et al.  An integrated global and local optimization approach for remediation system design , 1999 .

[18]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[19]  D. McKinney,et al.  Genetic algorithm solution of groundwater management models , 1994 .

[20]  Robert A. Marryott,et al.  Optimal Groundwater Management: 1. Simulated Annealing , 1991 .

[21]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[22]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[23]  Maria da Conceição Cunha,et al.  Water Systems Planning: The Optimization Perspective , 2003 .

[24]  Maria da Conceição Cunha,et al.  On solving aquifer management problems with simulated annealing algorithms , 1999 .