A reactive empirical bond order (REBO) potential for hydrocarbon oxygen interactions

The expansion of the second-generation reactive empirical bond order (REBO) potential for hydrocarbons, as parametrized by Brenner and co-workers, to include oxygen is presented. This involves the explicit inclusion of C–O, H–O, and O–O interactions to the existing C–C, C–H, and H–H interactions in the REBO potential. The details of the expansion, including all parameters, are given. The new, expanded potential is then applied to the study of the structure and chemical stability of several molecules and polymer chains, and to modelling chemical reactions among a series of molecules, within classical molecular dynamics simulations.

[1]  R. Colton,et al.  Atomistic mechanisms of adhesion and compression of diamond surfaces , 1991 .

[2]  Susan B. Sinnott,et al.  MOLECULAR DYNAMICS OF CARBON NANOTUBULE PROXIMAL PROBE TIP-SURFACE CONTACTS , 1999 .

[3]  Marian W. Radny,et al.  Application of the extended Brenner potential to the Si(111)7 × 7:H system I : cluster calculations , 2000 .

[4]  Lei Liu,et al.  Thin-film nucleation through molecular cluster beam deposition: Comparison of tight-binding and many-body empirical potential molecular dynamics simulations , 2002 .

[5]  Donald W. Brenner,et al.  Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces , 1992 .

[6]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[7]  M. Radny,et al.  Application of the extended Brenner potential to the Si(111)7×7:H system , 2000 .

[8]  J. Harrison,et al.  Friction between Diamond Surfaces in the Presence of Small Third-Body Molecules , 1997 .

[9]  S. Sinnott,et al.  Polymerization via Cluster−Solid Surface Impacts: Molecular Dynamics Simulations , 1997 .

[10]  E. Tosatti,et al.  (Meta)stable reconstructions of the diamond (111) surface: Interplay between diamond and graphitelike bonding , 2000, cond-mat/0001397.

[11]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[12]  S. Sinnott,et al.  Effects of unique ion chemistry on thin-film growth by plasma-surface interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Marian W. Radny,et al.  Energetics of single- and double-layer steps on the Si(001) 2 x 1 surface calculated using the extended Brenner empirical potential | NOVA. The University of Newcastle's Digital Repository , 2000 .

[14]  A. Fasolino,et al.  Reconstructions of diamond (100) and (111) surfaces: Accuracy of the Brenner potential , 2000, cond-mat/0003232.

[15]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[16]  Susan B. Sinnott,et al.  INTERACTIONS OF CARBON-NANOTUBULE PROXIMAL PROBE TIPS WITH DIAMOND AND GRAPHENE , 1998 .

[17]  J. Harrison,et al.  Universal Aspects of the Atomic-Scale Friction of Diamond Surfaces , 1995 .

[18]  Muthu B. J. Wijesundara,et al.  Effect of polyatomic ion structure on thin-film growth: Experiments and molecular dynamics simulations , 2000 .

[19]  J. Mintmire,et al.  Simulations of buckminsterfullerene (C60) collisions with a hydrogen-terminated diamond {111} surface , 1991 .

[20]  Donald W. Brenner,et al.  Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations , 1998 .

[21]  S. Sinnott,et al.  Effect of cluster size on the reactivity of organic molecular clusters: Atomistic simulations , 1998 .

[22]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[23]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[24]  N. Marks Generalizing the environment-dependent interaction potential for carbon , 2000 .

[25]  D. Brenner,et al.  Molecular Dynamics Simulations of Dimer Opening on a Diamond {001}(2x1) Surface , 1992, Science.

[26]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[27]  Susan B. Sinnott,et al.  Tribological properties of carbon nanotube bundles predicted from atomistic simulations , 2001 .

[28]  M. Ishimaru Molecular-dynamics study on atomistic structures of amorphous silicon , 2001 .

[29]  M. Radny,et al.  EMPIRICAL-POTENTIAL STUDY OF THE DISSOCIATIVE CHEMISORPTION OF SI2H6 ON THE SI(001)21 SURFACE , 1999 .

[30]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[31]  S. Sinnott,et al.  Comparison of growth of hydrocarbon thin films by molecular-beam and cluster-beam deposition : atomistic simulations , 2001 .

[32]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[33]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[34]  Phillip V. Smith,et al.  Extension of the Brenner empirical interatomic potential to CSiH systems , 1996 .

[35]  Donald W. Brenner,et al.  Simulated Tribochemistry: An Atomic-Scale View of the Wear of Diamond , 1994 .

[36]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[37]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[38]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[39]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[40]  David B. Graves,et al.  New C–F interatomic potential for molecular dynamics simulation of fluorocarbon film formation , 2000 .

[41]  Hydrocarbon thin films produced from adamantane–diamond surface deposition: Molecular dynamics simulations , 2001 .

[42]  D. Graves,et al.  Molecular dynamics simulations of Si etching by energetic CF3 , 1999 .

[43]  S. Sinnott,et al.  Atomistic simulations of organic thin film deposition through hyperthermal cluster impacts , 1998 .