Identification of TMEM230 mutations in familial Parkinson’s disease

[1]  T. Postmus Genetics of Parkinson's disease , 2018 .

[2]  Xinglong Yang,et al.  Sequence TMEM230 gene in patients with multiple system atrophy in a southwest Chinese population: A pilot study , 2017, Journal of the Neurological Sciences.

[3]  Xinglong Yang,et al.  Sequencing TMEM230 in Chinese patients with sporadic or familial Parkinson's disease , 2017, Movement disorders : official journal of the Movement Disorder Society.

[4]  Dimitri Krainc,et al.  The Parkinson’s disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking , 2017, Human molecular genetics.

[5]  K. Lohmann,et al.  Evaluating the role of TMEM230 variants in Parkinson's disease. , 2017, Parkinsonism & related disorders.

[6]  M. Farrer,et al.  Conjugal parkinsonism - Clinical, pathology and genetic study. No evidence of person-to-person transmission. , 2016, Parkinsonism & Related Disorders.

[7]  Y. Dauvilliers,et al.  Analysis of DNAJC13 mutations in French-Canadian/French cohort of Parkinson's disease , 2016, Neurobiology of Aging.

[8]  Matthias Mann,et al.  Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases , 2016, eLife.

[9]  Key mendelian variants , 2015, Nature Genetics.

[10]  J. Langston,et al.  Multisystem Lewy body disease and the other parkinsonian disorders , 2015, Nature Genetics.

[11]  M. Dorschner,et al.  The RAB39B p.G192R mutation causes X-linked dominant Parkinson’s disease , 2015, Molecular Neurodegeneration.

[12]  R. Petersen,et al.  DNAJC13 p.Asn855Ser mutation screening in Parkinson's disease and pathologically confirmed Lewy body disease patients , 2015, European journal of neurology.

[13]  Martin J. McKeown,et al.  DNAJC13 genetic variants in parkinsonism , 2015, Movement disorders : official journal of the Movement Disorder Society.

[14]  P. Lockhart,et al.  Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology. , 2014, American journal of human genetics.

[15]  S. Blanton,et al.  A novel mutation in VCP causes Charcot-Marie-Tooth Type 2 disease. , 2014, Brain : a journal of neurology.

[16]  H. Shill,et al.  Concomitant pathologies among a spectrum of parkinsonian disorders. , 2014, Parkinsonism & related disorders.

[17]  H. Liany,et al.  DNAJ mutations are rare in Chinese Parkinson's disease patients and controls , 2014, Neurobiology of Aging.

[18]  Wyeth W Wasserman,et al.  DNAJC13 mutations in Parkinson disease. , 2014, Human molecular genetics.

[19]  Michael D. Pluth,et al.  Identification and Rescue of α-Synuclein Toxicity in Parkinson Patient–Derived Neurons , 2013, Science.

[20]  Daniel F Tardiff,et al.  Yeast Reveal a “Druggable” Rsp5/Nedd4 Network that Ameliorates α-Synuclein Toxicity in Neurons , 2013, Science.

[21]  S. Pappatà,et al.  Mutation in the SYNJ1 Gene Associated with Autosomal Recessive, Early‐Onset Parkinsonism , 2013, Human mutation.

[22]  Vladimir Makarov,et al.  The Sac1 Domain of SYNJ1 Identified Mutated in a Family with Early‐Onset Progressive Parkinsonism with Generalized Seizures , 2013, Human mutation.

[23]  M. Farrer,et al.  Advances in the genetics of Parkinson disease , 2013, Nature Reviews Neurology.

[24]  Katherine H. Schreiber,et al.  When Lamins Go Bad: Nuclear Structure and Disease , 2013, Cell.

[25]  Eden R Martin,et al.  Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease , 2013, Neurology.

[26]  Jian Peng,et al.  Template-based protein structure modeling using the RaptorX web server , 2012, Nature Protocols.

[27]  K. Kaestner,et al.  A Deleterious Mutation in DNAJC6 Encoding the Neuronal-Specific Clathrin-Uncoating Co-Chaperone Auxilin, Is Associated with Juvenile Parkinsonism , 2012, PloS one.

[28]  Michael K. Hutchinson,et al.  Translation initiator EIF4G1 mutations in familial Parkinson disease. , 2011, American journal of human genetics.

[29]  I. Martin,et al.  Recent advances in the genetics of Parkinson's disease. , 2011, Annual review of genomics and human genetics.

[30]  A. Lang,et al.  The curious case of phenocopies in families with genetic Parkinson's disease , 2011, Movement disorders : official journal of the Movement Disorder Society.

[31]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[32]  M. Farrer,et al.  VPS35 mutations in Parkinson disease. , 2011, American journal of human genetics.

[33]  Marc N. Offman,et al.  A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. , 2011, American journal of human genetics.

[34]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[35]  Ted M. Dawson,et al.  Genetic Animal Models of Parkinson's Disease , 2010, Neuron.

[36]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[37]  M. Martina,et al.  Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4 , 2010, Nature Genetics.

[38]  V. Di Lazzaro,et al.  Heterozygous SOD1 D90A mutation presenting as slowly progressive predominant upper motor neuron amyotrophic lateral sclerosis , 2009, Neurological Sciences.

[39]  P. Andersen,et al.  Age and founder effect of SOD1 A4V mutation causing ALS , 2009, Neurology.

[40]  J. Caviston,et al.  Huntingtin as an essential integrator of intracellular vesicular trafficking. , 2009, Trends in cell biology.

[41]  E. Rogaeva,et al.  A mechanism for low penetrance in an ALS family with a novel SOD1 deletion , 2009, Neurology.

[42]  M. Poo,et al.  A Selective Filter for Cytoplasmic Transport at the Axon Initial Segment , 2009, Cell.

[43]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[44]  M. Farrer,et al.  Autosomal dominant dopa-responsive parkinsonism in a multigenerational Swiss family. , 2008, Parkinsonism & related disorders.

[45]  D. Hernandez,et al.  Characterization of PLA2G6 as a locus for dystonia‐parkinsonism , 2008, Annals of neurology.

[46]  M. Ronaghi,et al.  Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. , 2008, American journal of human genetics.

[47]  M. Farrer,et al.  Genomic investigation of α‐synuclein multiplication and parkinsonism , 2008, Annals of neurology.

[48]  C. Lautier,et al.  Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. , 2008, American journal of human genetics.

[49]  M. Farrer,et al.  Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication , 2007, Neurology.

[50]  J. Cappell,et al.  Tiagabine-induced nonconvulsive status epilepticus in an adolescent without epilepsy , 2006, Neurology.

[51]  M. Farrer,et al.  Parkinsonism, Lrrk2 G2019S, and tau neuropathology , 2006, Neurology.

[52]  Jan Gründemann,et al.  Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase , 2006, Nature Genetics.

[53]  E. Bigio,et al.  Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Schulz,et al.  Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. , 2005, Human molecular genetics.

[55]  Thomas Meitinger,et al.  Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology , 2004, Neuron.

[56]  Andrew Lees,et al.  Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease , 2004, Neuron.

[57]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[58]  D W Dickson,et al.  Autosomal dominant parkinsonism associated with variable synuclein and tau pathology , 2004, Neurology.

[59]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[60]  Janel O. Johnson,et al.  α-Synuclein Locus Triplication Causes Parkinson's Disease , 2003, Science.

[61]  J. Trojanowski,et al.  Initiation and Synergistic Fibrillization of Tau and Alpha-Synuclein , 2003, Science.

[62]  Patrizia Rizzu,et al.  Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism , 2002, Science.

[63]  J. Trojanowski,et al.  Concurrence of α-synuclein and tau brain pathology in the Contursi kindred , 2002, Acta Neuropathologica.

[64]  M. Farrer,et al.  Distinctive neuropathology revealed by α-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p , 2000, Acta Neuropathologica.

[65]  Georg Auburger,et al.  The ubiquitin pathway in Parkinson's disease , 1998, Nature.

[66]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[67]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[68]  A. Al-Chalabi,et al.  Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: Analysis of 155 cases and identification of novel insertion mutation , 1997, Annals of neurology.

[69]  M. L. Schmidt,et al.  α-Synuclein in Lewy bodies , 1997, Nature.

[70]  Robert L. Nussbaum,et al.  Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease , 1997 .

[71]  W. Robberecht,et al.  D90A heterozygosity in the SOD1 gene is associated with familial and apparently sporadic amyotrophic lateral sclerosis , 1996, Neurology.

[72]  J. Tainer,et al.  The D90A mutation results in a polymorphism of Cu,Zn superoxide dismutase that is prevalent in northern Sweden and Finland. , 1995, Human molecular genetics.

[73]  P. Andersen,et al.  Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase , 1995, Nature Genetics.

[74]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[75]  Kai Simons,et al.  The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway , 1992, Cell.

[76]  R. Uitti,et al.  Parkinsonism and neurofibrillary tangle pathology in pigmented nuclei , 1989, Annals of neurology.

[77]  G. Lathrop,et al.  Easy calculations of lod scores and genetic risks on small computers. , 1984, American journal of human genetics.

[78]  H. Braak,et al.  100 years of Lewy pathology , 2013, Nature Reviews Neurology.

[79]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[80]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[81]  A. Singleton,et al.  alpha-Synuclein locus triplication causes Parkinson's disease. , 2003, Science.

[82]  J. Trojanowski,et al.  Concurrence of alpha-synuclein and tau brain pathology in the Contursi kindred. , 2002, Acta neuropathologica.

[83]  M G Spillantini,et al.  Alpha-synuclein in Lewy bodies. , 1997, Nature.

[84]  S E Ide,et al.  Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. , 1997, Science.